8 research outputs found

    MLN-4760 Induces Oxidative Stress without Blood Pressure and Behavioural Alterations in SHRs: Roles of <i>Nfe2l2</i> Gene, Nitric Oxide and Hydrogen Sulfide

    No full text
    Reduced angiotensin 1–7 bioavailability due to inhibition of angiotensin-converting enzyme 2 (ACE2) may contribute to increased mortality in hypertensive individuals during COVID-19. However, effects of ACE2 inhibitor MLN-4760 in brain functions remain unknown. We investigated the selected behavioural and hemodynamic parameters in spontaneously hypertensive rats (SHRs) after a 2-week s.c. infusion of MLN-4760 (dose 1 mg/kg/day). The biochemical and molecular effects of MLN-4760 were investigated in the brainstem and blood plasma. MLN-4760 had no effects on hemodynamic and behavioural parameters. However, MLN-4760 increased plasma hydrogen sulfide (H2S) level and total nitric oxide (NO) synthase activity and conjugated dienes in the brainstem. Increased NO synthase activity correlated positively with gene expression of Nos3 while plasma H2S levels correlated positively with gene expressions of H2S-producing enzymes Mpst, Cth and Cbs. MLN-4760 administration increased gene expression of Ace2, Sod1, Sod2, Gpx4 and Hmox1, which positively correlated with expression of Nfe2l2 gene encoding the redox-sensitive transcription factor NRF2. Collectively, MLN-4760 did not exacerbate pre-existing hypertension and behavioural hyperactivity/anxiety in SHRs. However, MLN-4760-induced oxidative damage in brainstem was associated with activation of NO- and H2S-mediated compensatory mechanisms and with increased gene expression of antioxidant, NO- and H2S-producing enzymes that all correlated positively with elevated Nfe2l2 expression

    Genotype-Related Effect of Crowding Stress on Blood Pressure and Vascular Function in Young Female Rats

    No full text
    This study investigated the influence of chronic crowding stress on nitric oxide (NO) production, vascular function and oxidative status in young Wistar-Kyoto (WKY), borderline hypertensive (BHR) and spontaneously hypertensive (SHR) female rats. Five-week old rats were exposed to crowding for two weeks. Crowding elevated plasma corticosterone (P<0.05) and accelerated BP (P<0.01 versus basal) only in BHR. NO production and superoxide concentration were significantly higher in the aortas of control BHR and SHR versus WKY. Total acetylcholine (ACh)-induced relaxation in the femoral artery was reduced in control SHR versus WKY and BHR, and stress did not affect it significantly in any genotype. The attenuation of ACh-induced relaxation in SHR versus WKY was associated with reduction of its NO-independent component. Crowding elevated NO production in all strains investigated but superoxide concentration was increased only in WKY, which resulted in reduced NO-dependent relaxation in WKY. In crowded BHR and SHR, superoxide concentration was either unchanged or reduced, respectively, but NO-dependent relaxation was unchanged in both BHR and SHR versus their respective control group. This study points to genotype-related differences in stress vulnerability in young female rats. The most pronounced negative influence of stress was observed in BHR despite preserved endothelial function

    Differences in Distribution and Biological Effects of F3O4@PEG Nanoparticles in Normotensive and Hypertensive Rats&mdash;Focus on Vascular Function and Liver

    No full text
    We investigate the distribution and biological effects of polyethylene glycol (PEG)-coated magnetite (Fe3O4@PEG) nanoparticles (~30 nm core size, ~51 nm hydrodynamic size, 2 mg Fe/kg/day, intravenously, for two days) in the aorta and liver of Wistar&ndash;Kyoto (WKY) and spontaneously hypertensive rats (SHR). Fe3O4@PEG had no effect on open-field behaviour but reduced the blood pressure (BP) of Fe3O4@PEG-treated SHR (SHRu) significantly, compared to both Fe3O4@PEG-treated WKY (WKYu) and saline-treated control SHR (SHRc). The Fe3O4@PEG content was significantly elevated in the aorta and liver of SHRu vs. WKYu. Nitric oxide synthase (NOS) activity was unaltered in the aorta, but significantly increased in the liver of SHRu vs. SHRc. In the aorta, Fe3O4@PEG treatment increased eNOS, iNOS, NRF2, and DMT1 gene expression (considered main effects). In the liver, Fe3O4@PEG significantly elevated eNOS and iNOS gene expression in SHRu vs. SHRc, as well as DMT1 and FTH1 gene expression (considered main effects). Noradrenaline-induced contractions of the femoral arteries were elevated, while endothelium-dependent contractions were reduced in SHRu vs. SHRc. No differences were found in these parameters in WKY rats. In conclusion, the results indicated that the altered haemodynamics in SHR affect the tissue distribution and selected biological effects of Fe3O4@PEG in the vasculature and liver, suggesting that caution should be taken when using iron oxide nanoparticles in hypertensive subjects

    Taxifolin Reduces Blood Pressure via Improvement of Vascular Function and Mitigating the Vascular Inflammatory Response in Spontaneously Hypertensive Rats

    No full text
    The effect of a 10-day-long treatment with taxifolin (TAX, 20 mg/kg/day p.o.) was investigated on spontaneously hypertensive rats (SHRs) with a focus on the vascular functions of isolated femoral arteries and thoracic aortas. TAX reduced blood pressure in SHRs. In femoral arteries, TAX increased acetylcholine-induced relaxation, reduced the maximal NA-induced contraction, and reduced acetylcholine-induced endothelium-dependent contraction (EDC); however, TAX had no effect on the vascular reactivity of isolated thoracic aortas. In addition, TAX elevated the total nitric oxide synthase (NOS) activity and iNOS protein expression but reduced cyclooxygenase-2 (COX2) protein expression in the tissue of the abdominal aorta without changes in Nos2 and Ptgs2 gene expressions. TAX also increased the gene expression of the anti-inflammatory interleukin-10 (Il10). In addition, in vitro studies showed that TAX has both electron donor and H atom donor properties. However, TAX failed to reduce superoxide production in the tissue of the abdominal aorta after oral administration. In conclusion, our results show that a decrease in the blood pressure in TAX-treated SHRs might be attributed to improved endothelium-dependent relaxation and reduced endothelium-dependent contraction. In addition, the results suggest that the effect of TAX on blood pressure regulation also involves the attenuation of COX2-mediated pro-inflammation and elevation of anti-inflammatory pathways

    The effect of zofenopril on the cardiovascular system of spontaneously hypertensive rats treated with the ACE2 inhibitor MLN-4760

    No full text
    Abstract Background Angiotensin converting enzyme 2 (ACE2) plays a crucial role in the infection cycle of SARS-CoV-2 responsible for formation of COVID-19 pandemic. In the cardiovascular system, the virus enters the cells by binding to the transmembrane form of ACE2 causing detrimental effects especially in individuals with developed hypertension or heart disease. Zofenopril, a H2S-releasing angiotensin-converting enzyme inhibitor (ACEI), has been shown to be effective in the treatment of patients with essential hypertension; however, in conditions of ACE2 inhibition its potential beneficial effect has not been investigated yet. Therefore, the aim of the study was to determine the effect of zofenopril on the cardiovascular system of spontaneously hypertensive rats, an animal model of human essential hypertension and heart failure, under conditions of ACE2 inhibition induced by the administration of the specific inhibitor MLN-4760 (MLN). Results Zofenopril reduced MLN-increased visceral fat to body weight ratio although no changes in systolic blood pressure were recorded. Zofenopril administration resulted in a favorable increase in left ventricle ejection fraction and improvement of diastolic function regardless of ACE2 inhibition, which was associated with increased H2S levels in plasma and heart tissue. Similarly, the acute hypotensive responses induced by acetylcholine, L-NAME (NOsynthase inhibitor) and captopril (ACEI) were comparable after zofenopril administration independently from ACE2 inhibition. Although simultaneous treatment with zofenopril and MLN led to increased thoracic aorta vasorelaxation, zofenopril increased the NO component equally regardless of MLN treatment, which was associated with increased NO-synthase activity in aorta and left ventricle. Moreover, unlike in control rats, the endogenous H2S participated in maintaining of aortic endothelial function in MLN-treated rats and the treatment with zofenopril had no impact on this effect. Conclusions Zofenopril treatment reduced MLN-induced adiposity and improved cardiac function regardless of ACE2 inhibition. Although the concomitant MLN and zofenopril treatment increased thoracic aorta vasorelaxation capacity, zofenopril increased the participation of H2S and NO in the maintenance of endothelial function independently from ACE2 inhibition. Our results confirmed that the beneficial effects of zofenopril were not affected by ACE2 inhibition, moreover, we assume that ACE2 inhibition itself can lead to the activation of cardiovascular compensatory mechanisms associated with Mas receptor, nitrous and sulfide signaling
    corecore