4 research outputs found

    The effect of intensive hot deformation on the final structure of low carbon steel

    Get PDF
    Předložená diplomová práce se zabývá vlivem intenzivní deformace za tepla i dalších termomechanických podmínek tváření, na finální strukturní a mechanické vlastnosti nelegované nízkouhlíkové oceli. Pro experimentální práce byla využita především jednotka MAXStrain II, která je součástí simulátoru HDS-20. Mikrostruktura všech vzorků deformovaných na jednotce MAXStrain II byla tvořena směsí feritu a perlitu (minoritní podíl). V případě vzorků ochlazovaných po deformaci akcelerovaným způsobem byly v mikrostruktuře navíc detekovány také zákalné složky (podíl do 5 %). Ve všech případech došlo během zkoušek na jednotce MAXStrain II ke zjemnění výsledného feritického zrna a ke zvýšení tvrdosti zkoumané oceli (ve srovnání s výchozím strukturním stavem). Výsledné feritické zrno se zmenšovalo a zároveň tvrdost se zvyšovala s klesající teplotou deformace a v případě menší celkové intenzity deformace také s delší meziúběrovou pauzou. Výrazný vliv na výslednou velikost feritického zrna a na tvrdost zkoumané oceli však měla zvolená rychlost ochlazování.The presented diploma thesis deals with the influence of intense deformation under heat, as well as other thermomechanical forming conditions, on the final structural and mechanical properties of unalloyed low-carbon steel. The MAXStrain II unit, which is part of the HDS-20 simulator, was mainly used for experimental work. The microstructure of all samples deformed on the MAXStrain II unit consisted of a mixture of ferrite and perlite (minor proportion). In the case of samples cooled after deformation in an accelerated manner, turbidity components were also detected in the microstructure (up to 5%). In all cases, during the tests on the MAXStrain II unit, the resulting ferritic grain became finer and the hardness of the examined steel increased (compared to the initial structural state). The resulting ferritic grain decreased and at the same time the hardness increased with decreasing deformation temperature and in the case of lower total deformation intensity also with a longer inter-hit break. The chosen cooling rate had a significant effect on the resulting ferritic grain size and the hardness of the investigated steel.633 - Katedra tváření materiáluvelmi dobř

    Jobs not Threatened by Automation in the Future in the Slovak Republic

    Get PDF
    Industry 4.0 brings with it an increase in new forms and methods of work based on automation and digitization, which gradually threaten jobs in individual countries. Most studies published on this topic describe the expected proportion of jobs that are threatened with extinction. The aim of the presented study is to investigate the opportunities that the introduction of Industry 4.0 brings with it. The presented study calculates the share of jobs with a low risk of being threatened by automation in the Slovak Republic. This is a unique approach to researching the impact of innovation trends on the labor market, which identifies jobs that are difficult to replace by machines. The calculation of the share of jobs with a low risk of being threatened by automation is based on the connection of two data sources – National system of occupations (a description of the skills required for every job in the Slovak Republic) and Information system on the price of work (modern and effective national labour cost statistical survey focus on wage earnings, including the calculation of the number of employees in individual job positions). Of the total number of 2 million working people in the Slovak Republic, 24% will not be threatened by automation. These are jobs that require at least one of the following skills for their performance: creativity, organizing and planning work, the ability to make decisions and take responsibility, leadership skills, critical thinking and talent. Several authors investigating the issue of innovations and their effects on jobs define the above-mentioned skills as difficult to be replaced by machines. The findings presented in the paper create space for further discussion at the national level about which skills and competences will need to be supported in lifelong learning among employees in order to prevent the high rate of replacement of jobs by automation, which the OECD predicts for the Slovak Republic

    Hot deformation activation energy of FeNi36 alloy

    No full text
    Hrnčiar, M. Aktivační energie při tváření slitiny FeNi36 za tepla Ostrava: katedra tváření materiálu, VŠB-Technická Univerzita Ostrava, 2020. 40 s. Bakalářská práce, vedoucí: Ing. Stanislav Rusz, Ph.D. Bakalářská práce se zabývá stanovením aktivační energie při tváření slitiny FeNi36 za tepla. Teoretická část je věnována křivkám deformace – napětí, výpočtu aktivační energie a zkoušce jednoosým tlakem. Jednoosé tlakové zkoušky se konaly při deformačních rychlostech 0,001; 0,1; 0,3 a 10 s-1 a za teplot deformace 800, 900, 1000, 1120, 1250 °C na plastometru Gleeble 3800. Pro výpočet aktivační energie byl použit specifický program ENERGY 4.0. Díky vypočteným konstantám bylo možné určit vliv počátečního zrna na velikost maximálního deformačního odporu a deformace.Hrnčiar, M. Hot deformation activation energy of FeNi36 alloy. Ostrava: Department of material forming, VŠB- Technical University of Ostrava, 2020. 40 s. Bachelor thesis, head: Ing. Stanislav Rusz, Ph.D. The bachelor thesis deals with determination of hot deformation activation energy of FeNi36 alloy. In theory, we deal with stress-strain curves, calculation of activation energy and uniaxial compression test. Uniaxial compression tests were performed at strain rates of 0,001; 0,01;0,3 and 10 s-1 and deformation temperature of 800, 900, 1000, 1120 and 1250 °C using the Gleeble plastometer 3800. For calculation of activation energy was used specific software ENERGY 4.0. Thanks to calculated constants, it was possible to determine effect of the initial grain on the magnitude of maximum deformation resistance and deformation.633 - Katedra tváření materiáluvýborn

    Factors Shaping the Employment of Military Force from the Perspective of the War in Ukraine

    No full text
    The study presents a meritorious view of the traditional operational factors of space, time and force. On the background of the first and second phases of the War in Ukraine, it examines how the relevant factors shape the use of military force in operations, clarifies their mutual correlation, interference, application connections and also causality. The results of the study demonstrate the necessity of a correct and holistic perception of operational factors for effective deployment and employment of military forces in the contemporary operating environment. The main benefit of the study, applying the heuristic and inventive function of analogy from the open sources of available identified knowledge from the deployment of military forces in the War in Ukraine, is the mediation of model examples of a comprehensive vision of the effects of how operational factors shape the use of military force in contemporary high-intensity warfare operations
    corecore