26 research outputs found

    Neuroprotective Effect of Transplanted Human Embryonic Stem Cell-Derived Neural Precursors in an Animal Model of Multiple Sclerosis

    Get PDF
    BACKGROUND: Multiple sclerosis (MS) is an immune mediated demyelinating disease of the central nervous system (CNS). A potential new therapeutic approach for MS is cell transplantation which may promote remyelination and suppress the inflammatory process. METHODS: We transplanted human embryonic stem cells (hESC)-derived early multipotent neural precursors (NPs) into the brain ventricles of mice induced with experimental autoimmune encephalomyelitis (EAE), the animal model of MS. We studied the effect of the transplanted NPs on the functional and pathological manifestations of the disease. RESULTS: Transplanted hESC-derived NPs significantly reduced the clinical signs of EAE. Histological examination showed migration of the transplanted NPs to the host white matter, however, differentiation to mature oligodendrocytes and remyelination were negligible. Time course analysis of the evolution and progression of CNS inflammation and tissue injury showed an attenuation of the inflammatory process in transplanted animals, which was correlated with the reduction of both axonal damage and demyelination. Co-culture experiments showed that hESC-derived NPs inhibited the activation and proliferation of lymph node-derived T cells in response to nonspecific polyclonal stimuli. CONCLUSIONS: The therapeutic effect of transplantation was not related to graft or host remyelination but was mediated by an immunosuppressive neuroprotective mechanism. The attenuation of EAE by hESC-derived NPs, demonstrated here, may serve as the first step towards further developments of hESC for cell therapy in MS

    High Cooperativity of the SV40 Major Capsid Protein VP1 in Virus Assembly

    Get PDF
    SV40 is a small, non enveloped DNA virus with an icosahedral capsid of 45 nm. The outer shell is composed of pentamers of the major capsid protein, VP1, linked via their flexible carboxy-terminal arms. Its morphogenesis occurs by assembly of capsomers around the viral minichromosome. However the steps leading to the formation of mature virus are poorly understood. Intermediates of the assembly reaction could not be isolated from cells infected with wt SV40. Here we have used recombinant VP1 produced in insect cells for in vitro assembly studies around supercoiled heterologous plasmid DNA carrying a reporter gene. This strategy yields infective nanoparticles, affording a simple quantitative transduction assay. We show that VP1 assembles under physiological conditions into uniform nanoparticles of the same shape, size and CsCl density as the wild type virus. The stoichiometry is one DNA molecule per capsid. VP1 deleted in the C-arm, which is unable to assemble but can bind DNA, was inactive indicating genuine assembly rather than non-specific DNA-binding. The reaction requires host enzymatic activities, consistent with the participation of chaperones, as recently shown. Our results demonstrate dramatic cooperativity of VP1, with a Hill coefficient of ∼6. These findings suggest that assembly may be a concerted reaction. We propose that concerted assembly is facilitated by simultaneous binding of multiple capsomers to a single DNA molecule, as we have recently reported, thus increasing their local concentration. Emerging principles of SV40 assembly may help understanding assembly of other complex systems. In addition, the SV40-based nanoparticles described here are potential gene therapy vectors that combine efficient gene delivery with safety and flexibility

    Small RNA sequencing-microarray analyses in Parkinson leukocytes reveal deep brain stimulation-induced splicing changes that classify brain region transcriptomes

    No full text
    MicroRNAs (miRNAs) are key post transcriptional regulators of their multiple target genes. However, the detailed profile of miRNA expression in Parkinson's disease, the second most common neurodegenerative disease worldwide and the first motor disorder has not been charted yet. Here, we report comprehensive miRNA profiling by next-generation small-RNA sequencing, combined with targets inspection by splice-junction and exon arrays interrogating leukocyte RNA in Parkinson’s disease patients before and after deep brain stimulation (DBS) treatment and of matched healthy control volunteers (HC). RNA-Seq analysis identified 254 miRNAs and 79 passenger strand forms as expressed in blood leukocytes, 16 of which were modified in patients pre treatment as compared to HC. 11 miRNAs were modified following brain stimulation, 5 of which were changed inversely to the disease induced changes. Stimulation cessation further induced changes in 11 miRNAs. Transcript isoform abundance analysis yielded 332 changed isoforms in patients compared to HC, which classified brain transcriptomes of 47 PD and control independent microarrays. Functional enrichment analysis highlighted mitochondrion organization. DBS induced 155 splice changes, enriched in ubiquitin homeostasis. Cellular composition analysis revealed immune cell activity pre and post treatment. Overall, 217 disease and 74 treatment alternative isoforms were predictably targeted by modified miRNAs within both 3’ and 5’ untranslated ends and coding sequence sites. The stimulation-induced network sustained 4 miRNAs and 7 transcripts of the disease network. We believe that the presented dynamic networks provide a novel avenue for identifying disease and treatment-related therapeutic targets. Furthermore, the identification of these networks is a major step forward in the road for understanding the molecular basis for neurological and neurodegenerative diseases and assessment of the impact of brain stimulation on human diseases

    Equilibrium sedimentation in CsCl gradient.

    No full text
    <p>The reaction products, 2 ml, were fractionated on a CsCl density gradient in stabilization buffer at pH 5.2 (<a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0000765#s4" target="_blank">Materials and Methods</a>). VP1 was analyzed by Coomassie and Bradford, DNA by real-time quantitative PCR and <i>luc</i> TU as described in <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0000765#s4" target="_blank">Materials and Methods</a>.</p

    Parameters affecting the in vitro packaging reaction.

    No full text
    <p>Effect of temperature (A) and concentration of monovalent salts (B) present during the re-association reaction (step B) on the yield, measured as titer of luc transducing units.</p

    Composition of the packaging reaction.

    No full text
    a<p>Final concentration of the reagents in the reaction mixture at each step is shown in parentheses.</p>b<p>Average±S.E. The titer is shown as luciferase transduction units. The number in parenthesis represents the number of repeated experiments.</p

    Analysis of the particles.

    No full text
    <p>A,B-Proteins were separated by elecrtrophoresis in Tricine buffer on 16% polyacrylamide gel. Western blotting was performed with polyclonal antibody against histone H3 (Upstate) (A) and against VP1 (B). M–size marker; 1–Nuclear extracts used in the packaging reaction; 2–In vitro assembled particles, fraction 9 of <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0000765#pone-0000765-g004" target="_blank">Fig. 4</a>. 3–wild type SV40. C-Analysis of the packaged DNA. Particles purified by ultrafiltration were treated with Tris base (200 mM) in presence of 25 mM EGTA and 25 mM DTT for 1 hr at 37°C. DNA was extracted by phenol-chloroform treatment in presence of 1% SDS, and analyzed by Southern blotting with pGL3-control as a probe.</p
    corecore