75 research outputs found

    Systematic reduction of sign errors in many-body calculations of atoms and molecules

    Full text link
    The self-healing diffusion Monte Carlo algorithm (SHDMC) [Phys. Rev. B {\bf 79}, 195117 (2009), {\it ibid.} {\bf 80}, 125110 (2009)] is shown to be an accurate and robust method for calculating the ground state of atoms and molecules. By direct comparison with accurate configuration interaction results for the oxygen atom we show that SHDMC converges systematically towards the ground-state wave function. We present results for the challenging N2_2 molecule, where the binding energies obtained via both energy minimization and SHDMC are near chemical accuracy (1 kcal/mol). Moreover, we demonstrate that SHDMC is robust enough to find the nodal surface for systems at least as large as C20_{20} starting from random coefficients. SHDMC is a linear-scaling method, in the degrees of freedom of the nodes, that systematically reduces the fermion sign problem.Comment: Final version accepted in Physical Review Letters. The review history (referees' comments and our replies) is included in the source

    Simple Impurity Embedded in a Spherical Jellium: Approximations of Density Functional Theory compared to Quantum Monte Carlo Benchmarks

    Full text link
    We study the electronic structure of a spherical jellium in the presence of a central Gaussian impurity. We test how well the resulting inhomogeneity effects beyond spherical jellium are reproduced by several approximations of density functional theory (DFT). Four rungs of Perdew's ladder of DFT functionals, namely local density approximation (LDA), generalized gradient approximation (GGA), meta-GGA and orbital-dependent hybrid functionals are compared against our quantum Monte Carlo (QMC) benchmarks. We identify several distinct transitions in the ground state of the system as the electronic occupation changes between delocalized and localized states. We examine the parameter space of realistic densities (1≤rs≤51 \le r_s\le 5) and moderate depths of the Gaussian impurity (Z<7Z<7). The selected 18 electron system (with closed-shell ground state) presents 1d→2s1d \to 2s transitions while the 30 electron system (with open-shell ground state) exhibits 1f→2p1f \to 2p transitions. For the former system, the accuracy for the transitions is clearly improving with increasing sophistication of functionals with meta-GGA and hybrid functionals having only small deviations from QMC. However, for the latter system, we find much larger differences for the underlying transitions between our pool of DFT functionals and QMC. We attribute this failure to treatment of the exact exchange within these functionals. Additionally, we amplify the inhomogeneity effects by creating the system with spherical shell which leads to even larger errors in DFT approximations.Comment: 8 pages, 4 figures, submitted to PRB as a regular article revisited version after revie

    Coherent "metallic" resistance and medium localisation in a disordered 1D insulator

    Get PDF
    It is believed, that a disordered one-dimensional (1D) wire with coherent electronic conduction is an insulator with the mean resistance \simeq e^{2L/\xi} and resistance dispersion \Delta_{\rho} \simeq e^{L/\xi}, where L is the wire length and \xi is the electron localisation length. Here we show that this 1D insulator undergoes at full coherence the crossover to a 1D "metal", caused by thermal smearing and resonant tunnelling. As a result, \Delta_{\rho} is smaller than unity and tends to be L/\xi - independent, while grows with L/\xi first nearly linearly and then polynomially, manifesting the so-called medium localisation.Comment: 4 pages, 4 figures, RevTeX

    Approximate and exact nodes of fermionic wavefunctions: coordinate transformations and topologies

    Full text link
    A study of fermion nodes for spin-polarized states of a few-electron ions and molecules with s,p,ds,p,d one-particle orbitals is presented. We find exact nodes for some cases of two electron atomic and molecular states and also the first exact node for the three-electron atomic system in 4S(p3)^4S(p^3) state using appropriate coordinate maps and wavefunction symmetries. We analyze the cases of nodes for larger number of electrons in the Hartree-Fock approximation and for some cases we find transformations for projecting the high-dimensional node manifolds into 3D space. The node topologies and other properties are studied using these projections. We also propose a general coordinate transformation as an extension of Feynman-Cohen backflow coordinates to both simplify the nodal description and as a new variational freedom for quantum Monte Carlo trial wavefunctions.Comment: 7 pages, 7 figure

    Understanding the apparent fractional charge of protons in the aqueous electrochemical double layer

    Get PDF
    A detailed atomic-scale description of the electrochemical interface is essential to the understanding of electrochemical energy transformations. In this work, we investigate the charge of solvated protons at the Pt(111) | H_2O and Al(111) | H_2O interfaces. Using semi-local density-functional theory as well as hybrid functionals and embedded correlated wavefunction methods as higher-level benchmarks, we show that the effective charge of a solvated proton in the electrochemical double layer or outer Helmholtz plane at all levels of theory is fractional, when the solvated proton and solvent band edges are aligned correctly with the Fermi level of the metal (E_F). The observed fractional charge in the absence of frontier band misalignment arises from a significant overlap between the proton and the electron density from the metal surface, and results in an energetic difference between protons in bulk solution and those in the outer Helmholtz plane
    • …
    corecore