86 research outputs found

    Antibiotics and Antimicrobial Resistance in the COVID-19 Era: Perspective from Resource-Limited Settings

    Get PDF
    The dissemination of COVID-19 around the globe has been followed by an increased consumption of antibiotics. This is related to the concern for bacterial superinfection in COVID-19 patients. The identification of bacterial pathogens is challenging in low and middle income countries (LMIC), as there are no readily-available and cost-effective clinical or biological markers that can effectively discriminate between bacterial and viral infections. Fortunately, faced with the threat of COVID-19 spread, there has been a growing awareness of the importance of antimicrobial stewardship programs, as well as infection prevention and control measures that could help reduce the microbial load and hence circulation of pathogens, with a reduction in dissemination of antimicrobial resistance. These measures should be improved particularly in developing countries. Studies need to be conducted to evaluate the worldwide evolution of antimicrobial resistance during the COVID-19 pandemic, because pathogens do not respect borders. This issue takes on even greater importance in developing countries, where data on resistance patterns are scarce, conditions for infectious pathogen transmission are optimal, and treatment resources are suboptimal

    PROPHETIC: Prospective Identification of Pneumonia in Hospitalized Patients in the Intensive Care Unit

    Get PDF
    BACKGROUND: Pneumonia is the leading infection-related cause of death. Using simple clinical criteria and contemporary epidemiology to identify patients at high risk of nosocomial pneumonia should enhance prevention efforts and facilitate development of new treatments in clinical trials. RESEARCH QUESTION: What are the clinical criteria and contemporary epidemiology trends helpful in identifying patients at high risk of nosocomial pneumonia? STUDY DESIGN AND METHODS: Within the intensive care units of 28 United States hospitals, we conducted a prospective cohort study among adults hospitalized more than 48 hours and considered high risk for pneumonia (defined as treatment with invasive or noninvasive ventilatory support or high levels of supplemental oxygen). We estimated the proportion of high-risk patients developing nosocomial pneumonia. Using multivariable logistic regression, we identified patient characteristics and treatment exposures associated with increased risk of pneumonia development during the intensive care unit admission. RESULTS: Between February 6, 2016 and October 7, 2016, 4613 high-risk patients were enrolled. Among 1464/4613 (32%) high-risk patients treated for possible nosocomial pneumonia, 537/1464 (37%) met the study pneumonia definition. Among high-risk patients, a multivariable logistic model was developed to identify key patient characteristics and treatment exposures associated with increased risk of nosocomial pneumonia development (c-statistic 0.709, 95% confidence interval 0.686 to 0.731). Key factors associated with increased odds of nosocomial pneumonia included an admission diagnosis of trauma or cerebrovascular accident, receipt of enteral nutrition, documented aspiration risk, and receipt of systemic antibacterials within the preceding 90 days. INTERPRETATION: Treatment for nosocomial pneumonia is common among intensive care unit patients receiving high levels of respiratory support, yet more than half of patients treated do not fulfill standard diagnostic criteria for pneumonia. Application of simple clinical criteria may improve the feasibility of clinical trials of pneumonia prevention and treatment by facilitating prospective identification of patients at highest risk

    Re-emphasizing the concept of adequacy of intraoperative assessment of the axillary sentinel lymph nodes for identifying nodal positivity during breast cancer surgery

    Get PDF
    BACKGROUND: Although sentinel lymph node (SLN) biopsy is a standard of care for the evaluation of the axillary lymph nodes during breast cancer surgery, a substantial degree of variation exists among individual surgeons as to what represents an adequate assessment. The aim of the current study was to assess when metastatic disease was first identified within consecutively harvested SLN candidates for invasive breast cancers demonstrating a positive SLN. METHODS: We retrospectively analyzed a series of 400 breast cancers from a recently published prospective randomized clinical trial. A combined radiocolloid and blue dye technique was used. All potential SLN candidates, containing counts of at least 10% of the hottest SLN and/or containing blue dye, were harvested and were consecutively numbered in the order of the decreasing level of counts (with the hottest SLN representing SLN #1). RESULTS: Among 371 invasive breast cancers, a SLN was identified within 353 cases (95%). Mean number of SLNs identified was 2.5 (range, 1 to 9), with a single SLN identified in 104 (29%) cases, two identified in 110 (31%), three identified in 73 (21%), four identified in 35 (10%), five identified in 16 (5%), and six or more identified in 15 (4%). A positive SLN was found in 104 (29%) cases. SLN #1 was the first positive SLN in 86 (83%). SLN #2 was the first positive SLN in 15 (14%). SLN #3, SLN #4, and SLN #5 were the first positive SLN in one case (1%) each. A positive SLN was found in 18% (19/104) of cases when a single SLN was identified, as compared to in 34% (85/249) when two or more SLNs were identified (P = 0.003). CONCLUSION: The accurate and optimal assessment of the axilla during breast cancer surgery requires persistence and diligence for attempting to identify all potential SLN candidates in order to avoid failing to recognize a positive SLN. The scenario in which only a single negative SLN candidate is intraoperatively identified is one that should raise some concern to the operating surgeon

    Combined approach of perioperative 18F-FDG PET/CT imaging and intraoperative 18F-FDG handheld gamma probe detection for tumor localization and verification of complete tumor resection in breast cancer

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><sup>18</sup>F-fluorodeoxyglucose (<sup>18</sup>F-FDG) positron emission tomography/computed tomography (PET/CT) has become an established method for detecting hypermetabolic sites of known and occult disease and is widely used in oncology surgical planning. Intraoperatively, it is often difficult to localize tumors and verify complete resection of tumors that have been previously detected on diagnostic PET/CT at the time of the original evaluation of the cancer patient. Therefore, we propose an innovative approach for intraoperative tumor localization and verification of complete tumor resection utilizing <sup>18</sup>F-FDG for perioperative PET/CT imaging and intraoperative gamma probe detection.</p> <p>Methods</p> <p>Two breast cancer patients were evaluated. <sup>18</sup>F-FDG was administered and PET/CT was acquired immediately prior to surgery. Intraoperatively, tumors were localized and resected with the assistance of a handheld gamma probe. Resected tumors were scanned with specimen PET/CT prior to pathologic processing. Shortly after the surgical procedure, patients were re-imaged with PET/CT utilizing the same preoperatively administered <sup>18</sup>F-FDG dose.</p> <p>Results</p> <p>One patient had primary carcinoma of breast and a metastatic axillary lymph node. The second patient had a solitary metastatic liver lesion. In both cases, preoperative PET/CT verified these findings and demonstrated no additional suspicious hypermetabolic lesions. Furthermore, intraoperative gamma probe detection, specimen PET/CT, and postoperative PET/CT verified complete resection of the hypermetabolic lesions.</p> <p>Conclusion</p> <p>Immediate preoperative and postoperative PET/CT imaging, utilizing the same <sup>18</sup>F-FDG injection dose, is feasible and image quality is acceptable. Such perioperative PET/CT imaging, along with intraoperative gamma probe detection and specimen PET/CT, can be used to verify complete tumor resection. This innovative approach demonstrates promise for assisting the oncologic surgeon in localizing and verifying resection of <sup>18</sup>F-FDG positive tumors and may ultimately positively impact upon long-term patient outcomes.</p

    Genetic Diversity among Enterococcus faecalis

    Get PDF
    Enterococcus faecalis, a ubiquitous member of mammalian gastrointestinal flora, is a leading cause of nosocomial infections and a growing public health concern. The enterococci responsible for these infections are often resistant to multiple antibiotics and have become notorious for their ability to acquire and disseminate antibiotic resistances. In the current study, we examined genetic relationships among 106 strains of E. faecalis isolated over the past 100 years, including strains identified for their diversity and used historically for serotyping, strains that have been adapted for laboratory use, and isolates from previously described E. faecalis infection outbreaks. This collection also includes isolates first characterized as having novel plasmids, virulence traits, antibiotic resistances, and pathogenicity island (PAI) components. We evaluated variation in factors contributing to pathogenicity, including toxin production, antibiotic resistance, polymorphism in the capsule (cps) operon, pathogenicity island (PAI) gene content, and other accessory factors. This information was correlated with multi-locus sequence typing (MLST) data, which was used to define genetic lineages. Our findings show that virulence and antibiotic resistance traits can be found within many diverse lineages of E. faecalis. However, lineages have emerged that have caused infection outbreaks globally, in which several new antibiotic resistances have entered the species, and in which virulence traits have converged. Comparing genomic hybridization profiles, using a microarray, of strains identified by MLST as spanning the diversity of the species, allowed us to identify the core E. faecalis genome as consisting of an estimated 2057 unique genes

    A comprehensive overview of radioguided surgery using gamma detection probe technology

    Get PDF
    The concept of radioguided surgery, which was first developed some 60 years ago, involves the use of a radiation detection probe system for the intraoperative detection of radionuclides. The use of gamma detection probe technology in radioguided surgery has tremendously expanded and has evolved into what is now considered an established discipline within the practice of surgery, revolutionizing the surgical management of many malignancies, including breast cancer, melanoma, and colorectal cancer, as well as the surgical management of parathyroid disease. The impact of radioguided surgery on the surgical management of cancer patients includes providing vital and real-time information to the surgeon regarding the location and extent of disease, as well as regarding the assessment of surgical resection margins. Additionally, it has allowed the surgeon to minimize the surgical invasiveness of many diagnostic and therapeutic procedures, while still maintaining maximum benefit to the cancer patient. In the current review, we have attempted to comprehensively evaluate the history, technical aspects, and clinical applications of radioguided surgery using gamma detection probe technology

    Global eradication of lymphatic filariasis: the value of chronic disease control in parasite elimination programmes

    Get PDF
    The ultimate goal of the global programme against lymphatic filariasis is eradication through irrevocable cessation of transmission using 4 to 6 years of annual single dose mass drug administration. The costs of eradication, managerial impediments to executing national control programmes, and scientific uncertainty about transmission endpoints, are challenges to the success of this effort, especially in areas of high endemicity where financial resources are limited. We used a combined analysis of empirical community data describing the association between infection and chronic disease prevalence, mathematical modelling, and economic analyses to identify and evaluate the feasibility of setting an infection target level at which the chronic pathology attributable to lymphatic filariasis--lymphoedema of the extremities and hydroceles--becomes negligible in the face of continuing transmission as a first stage option in achieving the elimination of this parasitic disease. The results show that microfilaria prevalences below a threshold of 3.55% at a blood sampling volume of 1 ml could constitute readily achievable and sustainable targets to control lymphatic filarial disease. They also show that as a result of the high marginal cost of curing the last few individuals to achieve elimination, maximal benefits can occur at this threshold. Indeed, a key finding from our coupled economic and epidemiological analysis is that when initial uncertainty regarding eradication occurs and prospects for resolving this uncertainty over time exist, it is economically beneficial to adopt a flexible, sequential, eradication strategy based on controlling chronic disease initially
    • …
    corecore