217 research outputs found

    Infrared studies of dust grains in infrared reflection nebulae

    Get PDF
    IR reflection nebulae, regions of dust which are illuminated by nearby embedded sources, were observed in several regions of ongoing star formation. Near IR observation and theoretical modelling of the scattered light form IR reflection nebulae can provide information about the dust grain properties in star forming regions. IR reflection nebulae were modelled as plane parallel slabs assuming isotropically scattering grains. For the grain scattering properties, graphite and silicate grains were used with a power law grain size distribution. Among the free parameters of the model are the stellar luminosity and effective temperature, the optical depth of the nebula, and the extinction by foreground material. The typical results from this model are presented and discussed

    Terdiurnal Oscillations in OH Meinel Rotational Temperatures for Fall Conditions at Northern Mid-latitude Sites

    Get PDF
    High‐precision (∼0.5 K) measurements of OH Meinel (M) (6,2) rotational temperatures above the Bear Lake Observatory, UT (42°N, 112°W) during October 1996 have revealed an interesting and unexpected mean nocturnal pattern. Ten quality nights (\u3e100 h) of data have been used to form a mean night for autumnal, near‐equinoctial conditions. The mean temperature and RMS variability associated with this mean night were 203 ± 5 K and 2.4 K, respectively, and compare very favorably with expectations based on Na‐lidar measurements of mean tidal temperature perturbations over Urbana, IL (40°N, 88°W) during the fall 1996. Furthermore, this comparison shows that the 8‐h tide was the dominant source of the mean nocturnal temperature variability in the OH M region during this period. Additional data, obtained at Fort Collins, CO (41°N, 105°W) in November 1997, illustrate the occurrence of an 8‐h component of OH temperature variability about two months after the equinox and show that daily amplitudes as high as ≅15 K are possible

    Average Emissivity Curve of BATSE Gamma-Ray Bursts with Different Intensities

    Get PDF
    Six intensity groups with ~150 BATSE gamma-ray bursts each are compared using average emissivity curves. Time-stretch factors for each of the dimmer groups are estimated with respect to the brightest group, which serves as the reference, taking into account the systematics of counts-produced noise effects and choice statistics. A stretching/intensity anti-correlation is found with good statistical significance during the average back slopes of bursts. A stretch factor ~2 is found between the 150 dimmest bursts, with peak flux 4.1 ph cm^{-2} s^{-1}. On the other hand, while a trend of increasing stretching factor may exist for rise fronts for burst with decreasing peak flux from >4.1 ph cm^{-2} s^{-1} down to 0.7 ph cm^{-2} s^{-1}, the magnitude of the stretching factor is less than ~ 1.4 and is therefore inconsistent with stretching factor of back slope.Comment: 21 pages, 3 figures. Accepted to Ap

    Mesospheric Planetary Waves atNorthern Hemisphere Fall Equinox

    Get PDF
    Northern hemisphere planetary waves are strong in the winter and weak in the summer, and they go through a fast transition around equinox. This transition is studied here using NCAR Thermosphere‐Ionosphere‐Mesosphere‐Electrodynamics general circulation model (TIME‐GCM) simulations with 1997 National Centers for Environmental Prediction (NCEP) analysis. The planetary wave variability during the transition and its effect on the temperature and winds in the mesosphere are examined. The simulated planetary wave structure agrees with climatological studies, and the fast transition of the planetary waves is captured by the model. The wave variability produces large temperature changes in the upper atmosphere above local stations in middle and high latitudes. The qualitative behavior of the model is in excellent agreement with recent observations of a major perturbation in OH mesospheric temperatures from Ft. Collins (Taylor et al., 2001), although the smaller calculated magnitude suggests that the planetary wave amplitude might be underestimated by the model

    Object recognition and pose estimation of planar objects from range data

    Get PDF
    The Extravehicular Activity Helper/Retriever (EVAHR) is a robotic device currently under development at the NASA Johnson Space Center that is designed to fetch objects or to assist in retrieving an astronaut who may have become inadvertently de-tethered. The EVAHR will be required to exhibit a high degree of intelligent autonomous operation and will base much of its reasoning upon information obtained from one or more three-dimensional sensors that it will carry and control. At the highest level of visual cognition and reasoning, the EVAHR will be required to detect objects, recognize them, and estimate their spatial orientation and location. The recognition phase and estimation of spatial pose will depend on the ability of the vision system to reliably extract geometric features of the objects such as whether the surface topologies observed are planar or curved and the spatial relationships between the component surfaces. In order to achieve these tasks, three-dimensional sensing of the operational environment and objects in the environment will therefore be essential. One of the sensors being considered to provide image data for object recognition and pose estimation is a phase-shift laser scanner. The characteristics of the data provided by this scanner have been studied and algorithms have been developed for segmenting range images into planar surfaces, extracting basic features such as surface area, and recognizing the object based on the characteristics of extracted features. Also, an approach has been developed for estimating the spatial orientation and location of the recognized object based on orientations of extracted planes and their intersection points. This paper presents some of the algorithms that have been developed for the purpose of recognizing and estimating the pose of objects as viewed by the laser scanner, and characterizes the desirability and utility of these algorithms within the context of the scanner itself, considering data quality and noise

    Image Measurements of Short Period Gravity Waves at Equatorial Latitudes

    Get PDF
    A high-performance, all-sky imaging system has been used to obtain novel data on the morphology and dynamics of short-period (\u3c1 hour) gravity waves at equatorial latitudes. Gravity waves imaged in the upper mesosphere and lower thermosphere were recorded in three nightglow emissions, the near-infrared OH emission, and the visible wavelength OI (557.7 nm) and Na (589.2 nm) emissions spanning the altitude range ∼80–100 km. The measurements were made from Alcantara, Brazil (2.3°S, 44.5°W), during the period August-October 1994 as part of the NASA/Instituto Nacional de Pesquisas Espaciais “Guara campaign”. Over 50 wave events were imaged from which a statistical study of the characteristics of equatorial gravity waves has been performed. The data were found to divide naturally into two groups. The first group corresponded to extensive, freely propagating (or ducted) gravity waves with observed periods ranging from 3.7 to 36.6 min, while the second group consisted of waves of a much smaller scale and transient nature. The later group exhibited a bimodal distribution for the observed periods at 5.18 ± 0.26 min and 4.32 ± 0.15 min, close to the local Brunt-Vaisala period and the acoustic cutoff period, respectively. In comparison, the larger-scale waves exhibited a clear tendency for their horizontal wavelengths to increase almost linearly with observed period. This trend was particularly well defined around the equinox and can be represented by a power-law relationship of the form λ h = ( 3.1 ± 0.5 ) τ ob 1.06 ± 0.10 , where λ h is measured in kilometers and τob in minutes. This result is in very good agreement with previous radar and passive optical measurements but differs significantly from the relationship λ h ∝ τ105 ob inferred from recent lidar studies. The larger-scale waves were also found to exhibit strong anisotropy in their propagation headings with the dominant direction of motion toward the-NE-ENE suggesting a preponderance for wave generation over the South American continent

    Effects of a Large Mesospheric Temperature Enhancement on the Hydroxyl Rotational Temperature as Observedfrom the Ground

    Get PDF
    The rotational temperature obtained from the rotational population distribution in the bands of the hydroxyl airglow has been shown to be a suitable proxy for the temperature at a height of 87 km [She and Lowe, 1998]. In this paper we examine in detail simultaneous observations on November 2–3, 1997, at Fort Collins, Colorado (41°N, 105°W), with both a sodium temperature lidar and the Coupling, Energetics, and Dynamics of Atmospheric Regions (CEDAR) OH mesospheric temperature mapper during which significant differences between the hydroxyl and lidar temperatures occur. The large differences are associated with a major temperature enhancement in the region of the peak of the hydroxyl emission. We model the effect on the shape of the emission rate profile of the hydroxyl airglow caused by the large temperature enhancement observed on this night by the lidar. As a result of the temperature sensitivity of the processes that give rise to the airglow, the profile shows major distortions from its normal shape. These distortions in turn lead to hydroxyl rotational temperatures that differ significantly from the 87-km lidar observations. The mean rotational temperature deduced in this way agrees well with the observed values. Such deviations in the temperature are expected to be rare, occurring only when a large temperature enhancement occurs near the peak of the airglow emission profile

    Advanced Mesospheric Temperature Mapper for High-Latitude Airglow Studies

    Get PDF
    Over the past 60 years, ground-based remote sensing measurements of the Earth’s mesospheric temperature have been performed using the nighttime hydroxyl (OH) emission, which originates at an altitude of ∼87 km. Several types of instruments have been employed to date: spectrometers, Fabry–Perot or Michelson interferometers, scanning-radiometers, and more recently temperature mappers. Most of them measure the mesospheric temperature in a few sample directions and/or with a limited temporal resolution, restricting their research capabilities to the investigation of larger-scale perturbations such as inertial waves, tides, or planetary waves. The Advanced Mesospheric Temperature Mapper (AMTM) is a novel infrared digital imaging system that measures selected emission lines in the mesospheric OH (3,1) band (at ∼1.5 μm to create intensity and temperature maps of the mesosphere around 87 km. The data are obtained with an unprecedented spatial (∼0.5 km) and temporal (typically 30″) resolution over a large 120° field of view, allowing detailed measurements of wave propagation and dissipation at the ∼87 km level, even in the presence of strong aurora or under full moon conditions. This paper describes the AMTM characteristics, compares measured temperatures with values obtained by a collocated Na lidar instrument, and presents several examples of temperature maps and nightly keogram representations to illustrate the excellent capabilities of this new instrument

    The Hyperfine Splitting in Charmonium: Lattice Computations Using the Wilson and Clover Fermion Actions

    Full text link
    We compute the hyperfine splitting mJ/ψmηcm_{J/\psi}-m_{\eta_c} on the lattice, using both the Wilson and O(a)O(a)-improved (clover) actions for quenched quarks. The computations are performed on a 243×4824^3\times48 lattice at β=6.2\beta = 6.2, using the same set of 18 gluon configurations for both fermion actions. We find that the splitting is 1.83\err{13}{15} times larger with the clover action than with the Wilson action, demonstrating the sensitivity of the spin-splitting to the magnetic moment term which is present in the clover action. However, even with the clover action the result is less than half of the physical mass-splitting. We also compute the decay constants fηcf_{\eta_c} and fJ/ψ1f^{-1}_{J/\psi}, both of which are considerably larger when computed using the clover action than with the Wilson action. For example for the ratio fJ/ψ1/fρ1f^{-1}_{J/\psi}/f^{-1}_{\rho} we find 0.32\err{1}{2} with the Wilson action and 0.48±30.48\pm 3 with the clover action (the physical value is 0.44(2)).Comment: LaTeX file, 8 pages and two postscript figures. Southampton Preprint: SHEP 91/92-27 Edinburgh Preprint: 92/51

    Large Amplitude Perturbations in Mesospheric OH Meinel and 87-km Na Lidar Temperatures Around the Autumnal Equinox

    Get PDF
    Two high‐precision CEDAR instruments, an OH Mesospheric Temperature Mapper (MTM) and a Na Temperature Lidar, have been used to investigate seasonal variability in the mid‐latitude temperature at ∼87 km altitude over the western USA. Here we report the observation of a large perturbation in mesospheric temperature that occurs shortly after the autumnal equinox in close association with the penetration of planetary‐wave energy from the troposphere into the mesosphere. This perturbation has been observed on three occasions and exhibits a departure of up to ∼25–30 K from the nominal seasonal trend during a disturbed period of ∼2 weeks. Such behavior represents a dramatic transient departure from the seasonal trend expected on the basis of current empirical models. These novel results coupled with a recent TIME‐GCM modeling study [Liu et al., 2000] provide important insight into the role of planetary waves in mesospheric variability during the equinox periods
    corecore