5 research outputs found

    Cerebrospinal Fluid (CSF) Exchange with Artificial CSF Enriched with Mesenchymal Stem Cell Secretions Ameliorates Experimental Autoimmune Encephalomyelitis

    No full text
    The complexity of central nervous system (CNS) degenerative/inflammatory diseases and the lack of substantially effective treatments point to the need for a broader therapeutic approach to target multiple components involved in the disease pathogenesis. We suggest a novel approach directed for the elimination of pathogenic agents from the CNS and, in parallel, its enrichment with an array of neuroprotective substances, using a “cerebrospinal fluid (CSF) exchange„ procedure, in which endogenous (pathogenic) CSF is removed and replaced by artificial CSF (aCSF) enriched with secretions of human mesenchymal stem cells (MSCs). MSCs produce a variety of neuroprotective agents and have shown beneficial effects when cells are transplanted in animals and patients with CNS diseases. Our data show that MSCs grown in aCSF secrete neurotrophic factors, anti-inflammatory cytokines, and anti-oxidant agents; moreover, MSC-secretions-enriched-aCSF exerts neuroprotective and immunomodulatory effects in neuronal cell lines and spleen lymphocytes. Treatment of experimental-autoimmune-encephalomyelitis (EAE) mice with this enriched-aCSF using an intracerebroventricular (ICV) CSF exchange procedure (“CSF exchange therapy„) caused a significant delay in the onset of EAE and amelioration of the clinical symptoms, paralleled by a reduction in axonal damage and demyelination. These findings point to the therapeutic potential of the CSF exchange therapy using MSC-secretions-enriched-aCSF in inflammatory/degenerative diseases of the CNS

    Observations of calcium dynamics in cortical secretory vesicles

    No full text
    Calcium (Ca2+) dynamics were evaluated in fluorescently labeled sea urchin secretory vesicles using confocal microscopy. 71% of the vesicles examined exhibited one or more transient increases in the fluorescence signal that was damped in time. The detection of transient increases in signal was dependent upon the affinity of the fluorescence indicator; the free Ca2+ concentration in the secretory vesicles was estimated to be in the range of ~10 to 100µM. Non-linear stochastic analysis revealed the presence of extra variance in the Ca2+ dependent fluorescence signal. This noise process increased linearly with the amplitude of the Ca2+ signal. Both the magnitude and spatial properties of this noise process were dependent upon the activity of vesicle p-type (Cav2.1) Ca2+ channels. Blocking the p-type Ca2+ channels with ω-agatoxin decreased signal variance, and altered the spatial noise pattern within the vesicle. These fluorescence signal properties are consistent with vesicle Ca2+ dynamics and not simply due to obvious physical properties such as gross movement artifacts or pH driven changes in Ca2+ indicator fluorescence. The results suggest that the free Ca2+ content of cortical secretory vesicles is dynamic; this property may modulate the exocytotic fusion process
    corecore