14 research outputs found
Molecular Determinants and Consequences of Specificity in Histone 2A Ubiquitination
Specific ubiquitination of histones H2A is a crucial decision making point in the response to DNA damage. This thesis analysis the role of three distinct groups of lysines on H2A that are specifically ubiquitinated by three different E3 ligases, RING1b/BMI1, BRCA1/BARD1 and RNF168. The mechanistic basics underlying this specificity are discussed. The work describes how specific ubiquitination is employed to guide repair pathway choice between homologous recombination and non-homologous end joining. It shows that USP48, a deubiquitinating enzyme specific for the BRCA1 ubiquitination site, guides repair pathway choice by determining the extent of DNA end resection. Analysis of the E3 ligase RNF168 shows how specific interaction of the E3 with the nucleosomal acidic patch defines site-specificity. Furthermore, a general framework for structural analysis of E3-E2-Substrate complexes is presented
Structure of the Endonuclease Domain of MutL: Unlicensed to Cut
DNA mismatch repair corrects errors that have escaped polymerase proofreading, increasing replication fidelity 100- to 1000-fold in organisms ranging from bacteria to humans. The MutL protein plays a central role in mismatch repair by coordinating multiple protein-protein interactions that signal strand removal upon mismatch recognition by MutS. Here we report the crystal structure of the endonuclease domain of Bacillus subtilis MutL. The structure is organized in dimerization and regulatory subdomains connected by a helical lever spanning the conserved endonuclease motif. Additional conserved motifs cluster around the lever and define a Zn2+-binding site that is critical for MutL function in vivo. The structure unveils a powerful inhibitory mechanism to prevent undesired nicking of newly replicated DNA and allows us to propose a model describing how the interaction with MutS and the processivity clamp could license the endonuclease activity of MutL. The structure also provides a molecular framework to propose and test additional roles of MutL in mismatch repair.American Cancer Society (Research Professor)Natural Sciences and Engineering Research Council of Canada (NSERC scholarship)National Institutes of Health (U.S.) (CA21615)National Institutes of Health (U.S.) (GM45190)Natural Sciences and Engineering Research Council of Canada (NSERC, 288295)Deutsche Forschungsgemeinschaft (FR-1495/4-1)University of Michigan (Start-up funds
Histone H3.3 lysine 9 and 27 control repressive chromatin at cryptic enhancers and bivalent promoters
Histone modifications are associated with distinct transcriptional states, but it is unclear whether they instruct gene expression. To investigate this, we mutate histone H3.3 K9 and K27 residues in mouse embryonic stem cells (mESCs). Here, we find that H3.3K9 is essential for controlling specific distal intergenic regions and for proper H3K27me3 deposition at promoters. The H3.3K9A mutation resulted in decreased H3K9me3 at regions encompassing endogenous retroviruses and induced a gain of H3K27ac and nascent transcription. These changes in the chromatin environment unleash cryptic enhancers, resulting in the activation of distinctive transcriptional programs and culminating in protein expression normally restricted to specialized immune cell types. The H3.3K27A mutant disrupts the deposition and spreading of the repressive H3K27me3 mark, particularly impacting bivalent genes with higher basal levels of H3.3 at promoters. Therefore, H3.3K9 and K27 crucially orchestrate repressive chromatin states at cis-regulatory elements and bivalent promoters, respectively, and instruct proper transcription in mESCs
USP48 restrains resection by site-specific cleavage of the BRCA1 ubiquitin mark from H2A
BRCA1 ligase activity is tightly regulated to maintain genome stability and confer DNA double strand repair. Here the authors identify USP48 as a H2A deubiquitinating enzyme that acts as a BRCA1 E3 ligase antagonist and characterize its role during DNA repair
Structural basis of specific H2A K13/K15 ubiquitination by RNF168
Ubiquitination of chromatin by modification of histone H2A is a critical step in both regulation of DNA repair and regulation of cell fate. These very different outcomes depend on the selective modification of distinct lysine residues in H2A, each by a specific E3 ligase. While polycomb PRC1 complexes modify K119, resulting in gene silencing, the E3 ligase RNF168 modifies K13/15, which is a key event in the response to DNA double-strand breaks. The molecular origin of ubiquitination site specificity by these related E3 enzymes is one of the open questions in the field. Using a combination of NMR spectroscopy, crosslinking mass-spectrometry, mutagenesis and data-driven modelling, here we show that RNF168 binds the acidic patch on the nucleosome surface, directing the E2 to the target lysine. The structural model highlights the role of E3 and nucleosome in promoting ubiquitination and provides a basis for understanding and engineering of chromatin ubiquitination specificity
Structural basis of specific H2A K13/K15 ubiquitination by RNF168
Ubiquitination of histone H2A can occur on distinct lysine residues, but how each site is recognised by the specific E3 ligase remains poorly understood. Here the authors demonstrate that the E3 ligase RNF168 binds the acidic patch on the nucleosome surface, directing the E2 to the target lysine K13/K15
Stem Cell-like Megakaryocyte Progenitors As Driving Forces of IFN-Induced Emergency Megakaryopooesis
Inflammation-induced emergency megakaryopoiesis driven by hematopoietic stem cell-like megakaryocyte progenitors
Infections are associated with extensive platelet consumption, representing a high risk for health. However, the mechanism coordinating the rapid regeneration of the platelet pool during such stress conditions remains unclear. Here, we report that the phenotypic hematopoietic stem cell (HSC) compartment contains stem-like megakaryocyte-committed progenitors (SL-MkPs), a cell population that shares many features with multipotent HSCs and serves as a lineage-restricted emergency pool for inflammatory insults. During homeostasis, SL-MkPs are maintained in a primed but quiescent state, thus contributing little to steady-state megakaryopoiesis. Even though lineage-specific megakaryocyte transcripts are expressed, protein synthesis is suppressed. In response to acute inflammation, SL-MkPs become activated, resulting in megakaryocyte protein production from pre-existing transcripts and a maturation of SL-MkPs and other megakaryocyte progenitors. This results in an efficient replenishment of platelets that are lost during inflammatory insult. Thus, our study reveals an emergency machinery that counteracts life-threatening platelet depletions during acute inflammation