32 research outputs found

    Development and evaluation of the modiolar research array – multi-centre collaborative study in human temporal bones

    Get PDF
    OBJECTIVE: Multi-centre collaborative study to develop and refine the design of a prototype thin perimodiolar cochlear implant electrode array and to assess feasibility for use in human subjects. STUDY DESIGN: Multi-centre temporal bone insertion studies. MATERIALS AND METHODS: The modiolar research array (MRA) is a thin pre-curved electrode that is held straight for initial insertion with an external sheath rather than an internal stylet. Between November 2006 and February 2009, six iterations of electrode design were studied in 21 separate insertion studies in which 140 electrode insertions were performed in 85 human temporal bones by 12 surgeons. These studies aimed at addressing four fundamental questions related to the electrode concept, being: (1) Could a sheath result in additional intra-cochlear trauma? (2) Could a sheath accommodate variations in cochlea size and anatomies? (3) Could a sheath be inserted via the round window? and (4) Could a sheath be safely removed once the electrode had been inserted? These questions were investigated within these studies using a number of evaluation techniques, including X-ray and microfluoroscopy, acrylic fixation and temporal bone histologic sectioning, temporal bone microdissection of cochlear structures with electrode visualization, rotational tomography, and insertion force analysis. RESULTS: Frequent examples of electrode rotation and tip fold-over were demonstrated with the initial designs. This was typically caused by excessive curvature of the electrode tip, and also difficulty in handling of the electrode and sheath. The degree of tip curvature was progressively relaxed in subsequent versions with a corresponding reduction in the frequency of tip fold-over. Modifications to the sheath facilitated electrode insertion and sheath removal. Insertion studies with the final MRA design demonstrated minimal trauma, excellent perimodiolar placement, and very small electrode dimensions within scala tympani. Force measurements in temporal bones demonstrated negligible force on cochlear structures with angular insertion depths of between 390 and 450°. CONCLUSION: The MRA is a novel, very thin perimodiolar prototype electrode array that has been developed using a systematic collaborative approach. The different evaluation techniques employed by the investigators contributed to the early identification of issues and generation of solutions. Regarding the four fundamental questions related to the electrode concept, the studies demonstrated that (1) the sheath did not result in additional intra-cochlear trauma; (2) the sheath could accommodate variations in cochlea size and anatomies; (3) the sheath was more successfully inserted via a cochleostomy than via the round window; and (4) the sheath could be safely removed once the electrode had been inserted

    Reduction in excitability of the auditory nerve following electrical stimulation at high stimulus rates

    No full text
    Publisher’s permission requested and denied.While recent studies have suggested that electrical stimulation of the auditory nerve at high stimulus rates (e.g., 1000 pulses/s) may lead to an improved detection of the fine temporal components in speech among cochlear implant patients, neurophysiological studies have indicated that such stimulation could place metabolic stress on the auditory nerve, which may lead to neural degeneration. To examine this issue we recorded the electrically evoked auditory brainstem response (EABR) of guinea pigs following acute bipolar intracochlear electrical stimulation using charge-balanced biphasic current pulses at stimulus rates varying from 100 to 1000 pulses/s and stimulus intensities ranging from 0.16 to 1.0 µC/phase. Charge density was held constant (~ 75 µC cm^-2 geom/phase) in those experiments. To monitor the recovery in excitability of the auditory nerve following this acute stimulation, EABR thresholds, wave I and III amplitudes and their latencies were determined for periods of up to 12 h following the acute stimulation. Higher stimulus rates and, to a lesser extent, higher intensities led to greater decrements in the post-stimulus EABR amplitude and prolonged the recovery period. While continuous stimulation at 100 pulses/s induced no decrement in the EABR, stimulation at 200 and 400 pulses/s produced an increasingly significant post-stimulus reduction of the EABR amplitude, which showed only partial recovery during the monitoring period. No EABR response could be evoked immediately following stimulation at 1000 pulses/s, using a probe intensity 16-19 dB below the stimulus intensity. However, partial EABR recovery was observed for wave III following stimulation at the lowest stimulus intensity (0.16 µC/phase). These stimulus-induced reductions in the EABR amplitude were also reflected in increased thresholds and latencies. Providing stimulus rate and intensity were held constant, stimulation at different charge densities (37.7, 75.5 and 150.7 µC cm^-2 geom/phase) had no influence on the post-stimulus EABR recovery. Significantly, the introduction of a 50% duty cycle into the stimulus pulse train resulted in a more rapid and complete post-stimulus recovery of the EABR compared to continuous stimulation. These data suggest that stimulus rate is a major contributor to the observed reduction in excitability of the electrically stimulated auditory nerve. This reduction may be a result of an activity-induced depletion of neural energy resources required to maintain homeostasis. The present findings have implications for the design of safe speech-processing strategies for use in multichannel cochlear implants

    Reduction in excitability of the auditory nerve following electrical simulation at high stimulus rates. II. Comparison of fixed amplitude with amplitude modulated stimuli

    No full text
    Publisher’s permission requested and denied.We have previously shown that acute electrical stimulation of the auditory nerve using charge-balanced biphasic current pulses presented continuously can lead to a prolonged decrement in auditory nerve excitability (Tykocinski et al., Hear. Res. 88 (1995), 124-142). This work also demonstrated a reduction in electrically evoked auditory brainstem response (EABR) amplitude decrement when using an otherwise equivalent pulse train with a 50% duty cycle. In the present study we have extended this work in order to compare the effects of electrical stimulation using both fixed amplitude electrical pulse trains and amplitude modulated (AM) pulse trains that more accurately model the dynamic stimulus paradigms used in cochlear implants. EABRs were recorded from guinea pigs following acute stimulation using AM trains of charge-balanced biphasic current pulses. The extent of stimulus-induced reductions in the EABR were compared with our previous results using either fixed amplitude continuous, or 50% duty cycle pulse trains operating at 0.34 µC/phase (2 mA, 170 µs/phase) at 400 or 1000 pulses/s (Tykocinski et al., Hear. Res. 88 (1995) 124-142). The AM pulse train, operating at the same rates, was based on a I-s sequence of the most extensively activated electrode of a Nucleus Mini-22 cochlear implant using the SPEAK speech processing strategy exposed to 4-talker babble, and delivered the same total charge as the fixed amplitude 50% duty cycle pulse train. Two hours of continuous stimulation induced a significant, rate-dependent reduction in auditory nerve excitability, and showed only a slight post-stimulus recovery for monitoring periods of up to 6 hours. Following 2 or 4 h of stimulation using an otherwise equivalent pulse train with a 50% duty cycle or the AM pulse train, significantly less reduction in the EABR was observed, and recovery to pre-stimulus levels was generally rapid and complete. These differences in the extent of the recovery between the continuous waveform and both the 50% duty cycle and AM waveforms were statistically significant for both 400 and 1000 pulses/s stimuli. Consistent with our previous results, the stimulus changes observed using AM pulse trains were rate dependent, with higher rate stimuli evoking more extensive stimulus-induced changes. The present findings show that while stimulus-induced reductions in neural excitability are dependent on the extent of stimulus-induced neuronal activity, the use of an AM stimulus paradigm further reduces post-stimulus neural fatigue

    Physiological and histopathological effects of chronic monopolar high rate stimulation on the auditory nerve

    Get PDF
    Speech processing strategies based on high rate electrical stimulation have been associated with improvements in speech perception among cochlear implant users. The present study was designed to evaluate the electrophysiological and histopathological effects of long-term intracochlear monopolar stimulation at the maximum stimulus rate of the current Nucleus Cochlear implant system (14493 pulses/s) as part of our ongoing investigations of safety issues associated with cochlear implants4-7 Jun

    Intracochlear damage following insertion of the Nucleus 22 standard electrode array: a post mortem study of 14 implant patients

    Get PDF
    The insertion of an intracochlear electrode array may cause trauma to cochlear structures which can result in degeneration of neural elements, jeopardizing the potential benefits of electrical stimulation. Safety studies for the assessment of trauma associated with the Nucleus 22 standard electrode array involved animal experiments as well as insertion studies in post mortem temporal bones. However, there are only few histological studies of temporal bones from deceased cochlear implant patients. A review of our temporal bone collection of implantees originating from a variety of centres has been conducted to evaluate the effects of electrode insertion trauma associated with the Nucleus 22 standard array.3-5 Februar

    Chronic monopolar high rate simulation of the auditory nerve: physiological and histopathological effects

    Get PDF
    There is clinical interest in the development of high rate speech processing strategies, since there are indications that these might enhance speech perception due to an improved representation of the rapid variations in amplitude of speech. Significant improvement in speech perception using high rate stimulation has been demonstrated in cochlear implant recipients. However, it is important that the long-term safety of high rate stimulation is clearly established prior to its general clinical application. This is especially important, since acute animal studies have shown that high rate stimulation can induce a reduction in the excitability of the auditory nerve. This was also associated with an increase in both threshold and latency of the electrically evoked auditory brainstem response (EABR). However, while a chronic stimulation study indicated that monopolar electrical stimulation of the auditory nerve at rates of 1000 pulses per second (pps)/channel (three channels) had no adverse effects on the spiral ganglion cell density (SGCO),5 there is limited data concerning higher rates. In the present study, we evaluated the electrophysiological and histopathological effects of chronic monopolar electrical stimulation of the auditory nerve using considerably higher stimulus rates than have been used in previous studies.5-7 Apri

    A comparative study of phase-contrast and conventional x-ray imaging in human temporal bone samples

    Get PDF
    This study compared a new x-ray modality, phase-contrast radiography, with conventional radiography for imaging in human temporal bones and also investigated its potential application in the development of electrode arrays for advanced cochlear implants. Nucleus standard electrode arrays and peri-modiolar Contourn.4 electrode arrays were implanted into the cochleae of 10 human temporal bones. Both conventional and phase-contrast radiographs were taken of ~ach temporal bon~. The phase-contrast radiographs showed significant improvements over conventional radiographs in the detail of temporal bone images. These improvements included enhanced contrast at the edge of canal type features, inherent image magnification, higher spatial resolution, and ability to use detectors such as Imaging Plates. The results demonstrate that phase-contrast imaging can have important advantages in visualisation of anatomical details of both the inner ear structures and the microelectrode. It can provide a clearer definition of electrode location in relation to cochlear walls. This study demonstrates the feasibility of applying phase-contrast radiography to studies of the human temporal bone. However, its usefulness in the imaging of larger objects or perhaps even with patients in a clinical setting will require further investigation.5-7 Apri

    High rate electrical stimulation of the auditory nerve: physiological and pathological results [Abstract]

    Get PDF
    Previous experimental studies have shown that chronic electrical stimulation of the auditory nerve using charge balanced biphasic current pulses at rates of up to 500 pulses per second (pps) do not adversely affect the adjacent spiral ganglion population. More recently, a number of clinical trials have indicated that speech processing strategies based on high pulse rates (1000 pps and more), can further improve speech perception. In this paper we summarize our results following acute and chronic electrical stimulation of the auditory nerve using high pulse rates.19-24 Augus

    Post mortem study of the intracochlear position of the nucleus standard 22 electrode array

    Get PDF
    The final position of an intracochlear cochlear implant electrode array can vary depending on the pathology, the insertion technique used and the type of electrode array used. The distance of the electrodes from the target neural elements and the presence of intracochlear fibrous tissue or new bone formation are believed to affect the performance of the device. A post mortem study was conducted to assess these factors.4-7 Jun

    X-ray phase-contrast imaging

    Get PDF
    Foreign language abstract27-30 Augus
    corecore