109 research outputs found

    Rethinking Consent: Proposals for Reforming the Judicial Confirmation Process

    Get PDF

    Reinvigorating the Judiciary’s Role in Resolving Interbranch Disputes

    Get PDF
    The Framers established a federal government of three coequal, coordinate branches—each with its own constitutional responsibilities and each charged with checking the other two branches. Indeed, separated functions and balance of power are the two underlying elements of our bedrock constitutional principle of separation of powers. The current style of governance in the Unites States poses a unique and serious threat to that basic principle. Congressional dysfunction prevents the legislative branch from legislating, pushes the executive branch toward assuming greater lawmaking authority, and undermines the ability of both the judiciary and executive branch to fulfill their own constitutional obligations

    Method of inhibiting AB-type bacterial toxins and treatment for associated diseases

    Get PDF
    Disclosed herein are compounds useful in inhibiting the action of AB-type bacterial toxins such as cholera, traveler\u27s diarrhea, enterohemorrhagic diarrhea caused by E. coli O157:H7 and pertussis or whooping cough. Also included in the invention is the use of these compounds in treatment of diseases associated with those toxins

    Implementation of Monte Carlo Tree Search (MCTS) Algorithm in COMBATXXI using JDAFS

    Get PDF
    The implementation of the Monte Carlo Tree Search (MCTS) algorithm into the Combined Arms Analysis Tool for the 21st Century (COMBATXXI) project is an extension of work completed in FY13. The TRADOC Analysis Center - Methods and Research Office (TRAC-MRO) sponsored this iteration in an attempt to test the feasibility implementing the algorithm into the COMBATXXI simulation environment. For further details on the specific algorithm of more background information see appendix and the previous technical report.TRAC-MROTRAC Project Code # 060025Approved for public release; distribution is unlimited

    Detection of Toxin Translocation into the Host Cytosol by Surface Plasmon Resonance

    Get PDF
    AB toxins consist of an enzymatic A subunit and a cell-binding B subunit(1). These toxins are secreted into the extracellular milieu, but they act upon targets within the eukaryotic cytosol. Some AB toxins travel by vesicle carriers from the cell surface to the endoplasmic reticulum (ER) before entering the cytosol(2-4). In the ER, the catalytic A chain dissociates from the rest of the toxin and moves through a protein-conducting channel to reach its cytosolic target(5). The translocated, cytosolic A chain is difficult to detect because toxin trafficking to the ER is an extremely inefficient process: most internalized toxin is routed to the lysosomes for degradation, so only a small fraction of surface-bound toxin reaches the Golgi apparatus and ER6-12. To monitor toxin translocation from the ER to the cytosol in cultured cells, we combined a subcellular fractionation protocol with the highly sensitive detection method of surface plasmon resonance (SPR) (13-15). The plasma membrane of toxin-treated cells is selectively permeabilized with digitonin, allowing collection of a cytosolic fraction which is subsequently perfused over an SPR sensor coated with an anti-toxin A chain antibody. The antibody-coated sensor can capture and detect pg/mL quantities of cytosolic toxin. With this protocol, it is possible to follow the kinetics of toxin entry into the cytosol and to characterize inhibitory effects on the translocation event. The concentration of cytosolic toxin can also be calculated from a standard curve generated with known quantities of A chain standards that have been perfused over the sensor. Our method represents a rapid, sensitive, and quantitative detection system that does not require radiolabeling or other modifications to the target toxin

    Co- and Post-translocation Roles for HSP90 in Cholera Intoxication

    Get PDF
    Cholera toxin (CT) moves from the cell surface to the endoplasmic reticulum (ER) where the catalytic CTA1 subunit separates from the rest of the toxin. CTA1 then unfolds and passes through an ER translocon pore to reach its cytosolic target. Due to its intrinsic instability, cytosolic CTA1 must be refolded to achieve an active conformation. The cytosolic chaperone Hsp90 is involved with the ER to cytosol export of CTA1, but the mechanistic role of Hsp90 in CTA1 translocation remains unknown. Moreover, potential post-translocation roles for Hsp90 in modulating the activity of cytosolic CTA1 have not been explored. Here, we show by isotope-edited Fourier transform infrared spectroscopy that Hsp90 induces a gain-of-structure in disordered CTA1 at physiological temperature. Only the ATP-bound form of Hsp90 interacts with disordered CTA1, and refolding of CTA1 by Hsp90 is dependent upon ATP hydrolysis. In vitro reconstitution of the CTA1 translocation event likewise required ATP hydrolysis by Hsp90. Surface plasmon resonance experiments found that Hsp90 does not release CTA1, even after ATP hydrolysis and the return of CTA1 to a folded conformation. The interaction with Hsp90 allows disordered CTA1 to attain an active state, which is further enhanced by ADP-ribosylation factor 6, a host cofactor for CTA1. Our data indicate CTA1 translocation involves a process that couples the Hsp90-mediated refolding of CTA1 with CTA1 extraction from the ER. The molecular basis for toxin translocation elucidated in this study may also apply to several ADP-ribosylating toxins that move from the endosomes to the cytosol in an Hsp90-dependent process

    Modulation of Toxin Stability by 4-Phenylbutyric Acid and Negatively Charged Phospholipids

    Get PDF
    AB toxins such as ricin and cholera toxin (CT) consist of an enzymatic A domain and a receptor-binding B domain. After endocytosis of the surface-bound toxin, both ricin and CT are transported by vesicle carriers to the endoplasmic reticulum (ER). The A subunit then dissociates from its holotoxin, unfolds, and crosses the ER membrane to reach its cytosolic target. Since protein unfolding at physiological temperature and neutral pH allows the dissociated A chain to attain a translocation-competent state for export to the cytosol, the underlying regulatory mechanisms of toxin unfolding are of paramount biological interest. Here we report a biophysical analysis of the effects of anionic phospholipid membranes and two chemical chaperones, 4-phenylbutyric acid (PBA) and glycerol, on the thermal stabilities and the toxic potencies of ricin toxin A chain (RTA) and CT A1 chain (CTA1). Phospholipid vesicles that mimic the ER membrane dramatically decreased the thermal stability of RTA but not CTA1. PBA and glycerol both inhibited the thermal disordering of RTA, but only glycerol could reverse the destabilizing effect of anionic phospholipids. In contrast, PBA was able to increase the thermal stability of CTA1 in the presence of anionic phospholipids. PBA inhibits cellular intoxication by CT but not ricin, which is explained by its ability to stabilize CTA1 and its inability to reverse the destabilizing effect of membranes on RTA. Our data highlight the toxin-specific intracellular events underlying ER-to-cytosol translocation of the toxin A chain and identify a potential means to supplement the long-term stabilization of toxin vaccines
    • …
    corecore