4 research outputs found

    Three-dimensional tracking of cardiac catheters using an inverse geometry x-ray fluoroscopy system

    No full text
    Purpose: Scanning beam digital x-ray (SBDX) is an inverse geometry fluoroscopic system with high dose efficiency and the ability to perform continuous real-time tomosynthesis at multiple planes. This study describes a tomosynthesis-based method for 3D tracking of high-contrast objects and present the first experimental investigation of cardiac catheter tracking using a prototype SBDX system

    Calibration-free device sizing using an inverse geometry x-ray system

    No full text
    Purpose: Quantitative coronary angiography (QCA) can be used to support device size selection for cardiovascular interventions. The accuracy of QCA measurements using conventional x-ray fluoroscopy depends on proper calibration using a reference object and avoiding vessel foreshortening. The authors have developed a novel interventional device sizing method using the inverse geometry scanning-beam digital x-ray (SBDX) fluoroscopy system. The proposed method can measure the diameter and length of vessel segments without imaging a reference object and when vessels appear foreshortened
    corecore