14,620 research outputs found

    Cooperative Data Exchange based on MDS Codes

    Full text link
    The cooperative data exchange problem is studied for the fully connected network. In this problem, each node initially only possesses a subset of the KK packets making up the file. Nodes make broadcast transmissions that are received by all other nodes. The goal is for each node to recover the full file. In this paper, we present a polynomial-time deterministic algorithm to compute the optimal (i.e., minimal) number of required broadcast transmissions and to determine the precise transmissions to be made by the nodes. A particular feature of our approach is that {\it each} of the KdK-d transmissions is a linear combination of {\it exactly} d+1d+1 packets, and we show how to optimally choose the value of d.d. We also show how the coefficients of these linear combinations can be chosen by leveraging a connection to Maximum Distance Separable (MDS) codes. Moreover, we show that our method can be used to solve cooperative data exchange problems with weighted cost as well as the so-called successive local omniscience problem.Comment: 21 pages, 1 figur

    Learning to Rank Using Localized Geometric Mean Metrics

    Full text link
    Many learning-to-rank (LtR) algorithms focus on query-independent model, in which query and document do not lie in the same feature space, and the rankers rely on the feature ensemble about query-document pair instead of the similarity between query instance and documents. However, existing algorithms do not consider local structures in query-document feature space, and are fragile to irrelevant noise features. In this paper, we propose a novel Riemannian metric learning algorithm to capture the local structures and develop a robust LtR algorithm. First, we design a concept called \textit{ideal candidate document} to introduce metric learning algorithm to query-independent model. Previous metric learning algorithms aiming to find an optimal metric space are only suitable for query-dependent model, in which query instance and documents belong to the same feature space and the similarity is directly computed from the metric space. Then we extend the new and extremely fast global Geometric Mean Metric Learning (GMML) algorithm to develop a localized GMML, namely L-GMML. Based on the combination of local learned metrics, we employ the popular Normalized Discounted Cumulative Gain~(NDCG) scorer and Weighted Approximate Rank Pairwise (WARP) loss to optimize the \textit{ideal candidate document} for each query candidate set. Finally, we can quickly evaluate all candidates via the similarity between the \textit{ideal candidate document} and other candidates. By leveraging the ability of metric learning algorithms to describe the complex structural information, our approach gives us a principled and efficient way to perform LtR tasks. The experiments on real-world datasets demonstrate that our proposed L-GMML algorithm outperforms the state-of-the-art metric learning to rank methods and the stylish query-independent LtR algorithms regarding accuracy and computational efficiency.Comment: To appear in SIGIR'1

    QED Thermodynamics at Intermediate Coupling

    Full text link
    We discuss reorganizing finite temperature perturbation theory using hard-thermal-loop (HTL) perturbation theory in order to improve the convergence of successive perturbative approximations to the free energy of a gauge theory. We briefly review the history of the technique and present new results for the three-loop HTL-improved approximation for the free energy of QED. We show that the hard-thermal-loop perturbation reorganization improves the convergence of the successive approximations to the QED free energy at intermediate coupling, e ~ 2. The reorganization is gauge invariant by construction, and due to cancellation among various contributions, one can obtain a completely analytic result for the resummed thermodynamic potential at three loops.Comment: 8 pages, 3 figures, Proceedings contribution to "Three Days of Strong Interactions", Wroclaw (Poland), July 200

    Single-Server Multi-Message Private Information Retrieval with Side Information

    Full text link
    We study the problem of single-server multi-message private information retrieval with side information. One user wants to recover NN out of KK independent messages which are stored at a single server. The user initially possesses a subset of MM messages as side information. The goal of the user is to download the NN demand messages while not leaking any information about the indices of these messages to the server. In this paper, we characterize the minimum number of required transmissions. We also present the optimal linear coding scheme which enables the user to download the demand messages and preserves the privacy of their indices. Moreover, we show that the trivial MDS coding scheme with KMK-M transmissions is optimal if N>MN>M or N2+NKMN^2+N \ge K-M. This means if one wishes to privately download more than the square-root of the number of files in the database, then one must effectively download the full database (minus the side information), irrespective of the amount of side information one has available.Comment: 12 pages, submitted to the 56th Allerton conferenc

    Charged current universality problem and NuTeV anomaly: is SUSY to blame?

    Get PDF
    We compute the complete one-loop contributions to low-energy charged current weak interaction observables in the Minimal Supersymmetric Standard Model (MSSM). We obtain the constraints on the MSSM parameter space which arise when precision low-energy charged current (CC) data are analyzed in tandem with measurements of the muon anomaly. The data imply a pattern of mass splittings among first and second generation sleptons and squarks which contradicts predictions of widely used models for supersymmetry breaking mediation. We also discuss the implications of these constraints on the SUSY one-loop contributions to the (anti)neutrino-nucleus deep inelastic scattering. We consider the ratios of neutral current to charged current cross sections, and compare with the deviations of these quantities from the Standard Model predictions implied by the recent NuTeV measurement. We discuss one scenario in which a right-sign effect arises, and show that it is ruled out by the CC data. We also study R parity-violating contributions. Although such effects can account for the violation of the first row CKM unitarity, they can not reproduce the NuTeV anomaly. If NuTeV anomaly is ultimately explained within the SM, R parity-violating resolution of the CKM unitarity problem can be tested in parity-violating electron scattering experiments at SLAC and TJNAF

    Voting for Committees in Agreeable Societies

    Full text link
    We examine the following voting situation. A committee of kk people is to be formed from a pool of n candidates. The voters selecting the committee will submit a list of jj candidates that they would prefer to be on the committee. We assume that jk<nj \leq k < n. For a chosen committee, a given voter is said to be satisfied by that committee if her submitted list of jj candidates is a subset of that committee. We examine how popular is the most popular committee. In particular, we show there is always a committee that satisfies a certain fraction of the voters and examine what characteristics of the voter data will increase that fraction.Comment: 11 pages; to appear in Contemporary Mathematic

    Gas-Phase Photodegradation of Decane and Methanol on TiO_2: Dynamic Surface Chemistry Characterized by Diffuse Reflectance FTIR

    Get PDF
    Diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) was used to study illuminated TiO2 surfaces under both vacuum conditions, and in the presence of organic molecules (decane and methanol). In the presence of hole scavengers, electrons are trapped at Ti(III)–OH sites, and free electrons are generated. These free electrons are seen to decay by exposure either to oxygen or to heat; in the case of heating, reinjection of holes into the lattice by loss of sorbed hole scavenger leads to a decrease in Ti(III)–OH centers. Decane adsorption experiments lend support to the theory that removal of surficial hydrocarbon contaminants is responsible for superhydrophilic TiO2 surfaces. Oxidation of decane led to a mixture of surface-bound organics, while oxidation of methanol leads to the formation of surface-bound formic acid

    Impact of LSP Character on Slepton Reach at the LHC

    Get PDF
    Searches for supersymmetry at the Large Hadron Collider (LHC) have significantly constrained the parameter space associated with colored superpartners, whereas the constraints on color-singlet superpartners are considerably less severe. In this study, we investigate the dependence of slepton decay branching fractions on the nature of the lightest supersymmetric particle (LSP). In particular, in the Higgsino-like LSP scenarios, both decay branching fractions of ~L\tilde\ell_L and ν~\tilde\nu_\ell depend strongly on the sign and value of M1/M2M_1/M_2, which has strong implications for the reach of dilepton plus MET searches for slepton pair production. We extend the experimental results for same flavor, opposite sign dilepton plus MET searches at the 8 TeV LHC to various LSP scenarios. We find that the LHC bounds on sleptons are strongly enhanced for a non-Bino-like LSP: the 95% C.L. limit for m~Lm_{\tilde\ell_L} extends from 300 GeV for a Bino-like LSP to about 370 GeV for a Wino-like LSP. The bound for ~L\tilde\ell_L with a Higgsino-like LSP is the strongest (~ 490 GeV) for M1/M2M_1/M_2 ~ tan2θW-\tan^2\theta_W and is the weakest (~ 220 GeV) for M1/M2M_1/M_2 ~ tan2θW\tan^2\theta_W. We also calculate prospective slepton search reaches at the 14 TeV LHC. With 100 fb1^{-1} integrated luminosity, the projected 95% C.L. mass reach for the left-handed slepton varies from 550 (670) GeV for a Bino-like (Wino-like) LSP to 900 (390) GeV for a Higgsino-like LSP under the most optimistic (pessimistic) scenario. The reach for the right-handed slepton is about 440 GeV. The corresponding 5σ\sigma discovery sensitivity is about 100 GeV smaller. For 300 fb1^{-1} integrated luminosity, the reach is about 50 - 100 GeV higher.Comment: 24 pages, 10 figure
    corecore