2 research outputs found

    Fate of Photoexcited Molecular Antennae - Intermolecular Energy Transfer versus Photodegradation Assessed by Quantum Dynamics

    No full text
    The present computational study aims to unravel the competitive photoinduced intermolecular energy transfer and electron transfer phenomena in a light-harvesting antenna with potential applications in dye-sensitized solar cells and photocatalysis. A series of three thiazole dyes with hierarchically overlapping emission and absorption spectra, embedded in a methacrylate-based polymer backbone, is employed to absorb light over the entire visible region. Intermolecular energy transfer in such antenna proceeds via energy transfer from dye-to-dye and eventually to a photosensitizer. Initially, the ground and excited state properties of the three push–pull-chromophores (e.g., with respect to their absorption and emission spectra as well as their equilibrium structures) are thoroughly evaluated using state-of-the-art multiconfigurational methods and computationally less demanding DFT and TDDFT simulations. Subsequently, the potential energy landscape for the three dyads, formed by the π-stacked dyes as occurring in the polymer environment, is investigated along linear-interpolated internal coordinates to elucidate the photoinduced dynamics associated with intermolecular energy and electron transfer processes. While energy transfer among the dyes is highly desired in such antenna, electron transfer, or rather a light-induced redox chemistry, leading to the degradation of the chromophores, is disadvantageous. We performed quantum dynamical wavepacket calculations to investigate the excited state dynamics following initial light-excitation. Our calculations reveal for the two dyads with adjusted optical properties exclusively efficient intermolecular energy transfer within 200 fs, while in the case of the third dyad intermolecular electron transfer dynamics can be observed. Thus, this computational study reveals that statistical copolymerization of the individual dyes is disadvantageous with respect to the energy transfer efficiency as well as regarding the photostability of such antenna

    Hydrogel-Embedded Model Photocatalytic System Investigated by Raman and IR Spectroscopy Assisted by Density Functional Theory Calculations and Two-Dimensional Correlation Analysis

    No full text
    The presented study reports the synthesis and the vibrational spectroscopic characterization of different matrix-embedded model photocatalysts. The goal of the study is to investigate the interaction of a polymer matrix with photosensitizing dyes and metal complexes for potential future photocatalytic applications. The synthesis focuses on a new rhodamine B derivate and a Pt­(II) terpyridine complex, which both contain a polymerizable methacrylate moiety and an acid labile acylhydrazone group. The methacrylate moieties are afterward utilized to synthesize functional model hydrogels mainly consisting of poly­(ethylene glycol) methacrylate units. The pH-dependent and temperature-dependent behavior of the hydrogels is investigated by means of Raman and IR spectroscopy assisted by density functional theory calculations and two-dimensional correlation spectroscopy. The spectroscopic results reveal that the Pt­(II) terpyridine complex can be released from the polymer matrix by cleaving the CN bond in an acid environment. The same behavior could not be observed in the case of the rhodamine B dye although it features a comparable CN bond. The temperature-dependent study shows that the water evaporation has a significant influence neither on the molecular structure of the hydrogel nor on the model photocatalytic moieties
    corecore