128 research outputs found

    Status of CHIPS: A NASA University Explorer Astronomy Mission

    Get PDF
    In the age of Faster, Better, Cheaper , NASA\u27s Goddard Space Flight Center has been looking for a way to implement university based science missions for significantly less money. The University Explorer (UNEX) program is the result. UNEX missions are designed for rapid turnaround with fixed budgets in the 10−10-15 million US dollar range. The CHIPS project was selected in 1998. The CHIPS mission passed the Design Verification Review in April 2001 and is now proceeding into implementation with a launch in mid-2002. Many lessons have already been learned from the CHIPS UNEX project. The 2000 paper discussed the early issues surrounding the use of commercial satellite constellations and the politics of small satellites using foreign launchers. The difficulties of finding a spacecraft in the UNEX price range were highlighted. The advantages of utilizing Internet technologies from the earliest phases of the project through communications with the spacecraft on orbit were discussed. The 2001 paper will discuss the implementation status of CHIPS, the first of this new class of NASA mission, and the lessons learned. The current state of the program will be summarized and the project’s plans for the future will be charted

    Concert: Ithaca Wind Quintet

    Get PDF

    Diagnosing space telescope misalignment and jitter using stellar images

    Get PDF
    Accurate knowledge of the telescope's point spread function (PSF) is essential for the weak gravitational lensing measurements that hold great promise for cosmological constraints. For space telescopes, the PSF may vary with time due to thermal drifts in the telescope structure, and/or due to jitter in the spacecraft pointing (ground-based telescopes have additional sources of variation). We describe and simulate a procedure for using the images of the stars in each exposure to determine the misalignment and jitter parameters, and reconstruct the PSF at any point in that exposure's field of view. The simulation uses the design of the SNAP (http://snap.lbl.gov) telescope. Stellar-image data in a typical exposure determines secondary-mirror positions as precisely as 20nm20 {\rm nm}. The PSF ellipticities and size, which are the quantities of interest for weak lensing are determined to 4.0×10−44.0 \times 10^{-4} and 2.2×10−42.2 \times 10^{-4} accuracies respectively in each exposure, sufficient to meet weak-lensing requirements. We show that, for the case of a space telescope, the PSF estimation errors scale inversely with the square root of the total number of photons collected from all the usable stars in the exposure.Comment: 20 pages, 6 figs, submitted to PAS

    Fabrication of the DESI Corrector Lenses

    Get PDF
    The Dark Energy Spectroscopic Instrument (DESI) is under construction to measure the expansion history of the Universe using the Baryon Acoustic Oscillation technique. The spectra of 35 million galaxies and quasars over 14000 square degrees will be measured during the life of the experiment. A new prime focus corrector for the KPNO Mayall telescope will deliver light to 5000 fiber optic positioners. The fibers in turn feed ten broad-band spectrographs. We describe the DESI corrector optics, a series of six fused silica and borosilicate lenses. The lens diameters range from 0.8 to 1.1 meters, and their weights 84 to 237 kg. Most lens surfaces are spherical, and two are challenging 10th-order polynomial aspheres. The lenses have been successfully polished and treated with an antireflection coating at multiple subcontractors, and are now being integrated into the DESI corrector barrel assembly at University College London. We describe the final performance of the lenses in terms of their various parameters, including surface figure, homogeneity, and others, and compare their final performance against the demanding DESI corrector requirements. Also we describe the reoptimization of the lens spacing in their corrector barrel after their final measurements are known. Finally we assess the performance of the corrector as a whole, compared to early budgeted estimates

    Computational investigation on CO2 adsorption in titanium carbide-derived carbons with residual titanium

    Get PDF
    We develop a new approach for modeling titanium carbide derived-carbon (TiC-CDC) systems with residual titanium by the generation of modified atomistic structures based on a silicon carbide derived-carbon (SiC-CDC) model and the application of weighted combinations of these structures. In our approach, the original SiC-CDC structure is modified by (i) removing carbon, (ii) adding carbon and (iii) adding titanium. The new atomic scale carbide-derived carbon (CDC) structures are investigated using classical molecular dynamics simulations, and their pure CO adsorption isotherms are calculated using grand canonical Monte Carlo simulations. The system of TiC-CDC with residual titanium is modeled as weighted combinations of pure carbon CDC structures, CDC structures with titanium and a TiC crystalline structure. Our modeling is able to produce both structural properties and adsorption isotherms in accordance with experimental data. The fraction of different models in the systems successfully reflects the structural differences in various experimental TiC-CDC samples. The modeling also suggests that in partially etched TiC-CDC systems, the titanium that may be accessible to CO gas at the transitional interface may provide significant interaction sites for CO and may lead to more efficient overall gas adsorption
    • …
    corecore