1,597 research outputs found
Accurate gravitational waveforms for binary-black-hole mergers with nearly extremal spins
Motivated by the possibility of observing gravitational waves from merging
black holes whose spins are nearly extremal (i.e., 1 in dimensionless units),
we present numerical waveforms from simulations of merging black holes with the
highest spins simulated to date: (1) a 25.5-orbit inspiral, merger, and
ringdown of two holes with equal masses and spins of magnitude 0.97 aligned
with the orbital angular momentum; and (2) a previously reported 12.5-orbit
inspiral, merger, and ringdown of two holes with equal masses and spins of
magnitude 0.95 anti-aligned with the orbital angular momentum. First, we
consider the horizon mass and spin evolution of the new aligned-spin
simulation. During the inspiral, the horizon area and spin evolve in remarkably
close agreement with Alvi's analytic predictions, and the remnant hole's final
spin agrees reasonably well with several analytic predictions. We also find
that the total energy emitted by a real astrophysical system with these
parameters---almost all of which is radiated during the time included in this
simulation---would be 10.952% of the initial mass at infinite separation.
Second, we consider the gravitational waveforms for both simulations. After
estimating their uncertainties, we compare the waveforms to several
post-Newtonian approximants, finding significant disagreement well before
merger, although the phase of the TaylorT4 approximant happens to agree
remarkably well with the numerical prediction in the aligned-spin case. We find
that the post-Newtonian waveforms have sufficient uncertainty that hybridized
waveforms will require far longer numerical simulations (in the absence of
improved post-Newtonian waveforms) for accurate parameter estimation of
low-mass binary systems.Comment: 17 pages, 7 figures, submitted to Classical and Quantum Gravit
On the temperature dependence of the interaction-induced entanglement
Both direct and indirect weak nonresonant interactions are shown to produce
entanglement between two initially disentangled systems prepared as a tensor
product of thermal states, provided the initial temperature is sufficiently
low. Entanglement is determined by the Peres-Horodeckii criterion, which
establishes that a composite state is entangled if its partial transpose is not
positive. If the initial temperature of the thermal states is higher than an
upper critical value the minimal eigenvalue of the partially
transposed density matrix of the composite state remains positive in the course
of the evolution. If the initial temperature of the thermal states is lower
than a lower critical value the minimal eigenvalue of the
partially transposed density matrix of the composite state becomes negative
which means that entanglement develops. We calculate the lower bound
for and show that the negativity of the composite state is negligibly
small in the interval . Therefore the lower bound temperature
can be considered as \textit{the} critical temperature for the
generation of entanglement.Comment: 27 pages and 7 figure
Comparing Post-Newtonian and Numerical-Relativity Precession Dynamics
Binary black-hole systems are expected to be important sources of
gravitational waves for upcoming gravitational-wave detectors. If the spins are
not colinear with each other or with the orbital angular momentum, these
systems exhibit complicated precession dynamics that are imprinted on the
gravitational waveform. We develop a new procedure to match the precession
dynamics computed by post-Newtonian (PN) theory to those of numerical binary
black-hole simulations in full general relativity. For numerical relativity NR)
simulations lasting approximately two precession cycles, we find that the PN
and NR predictions for the directions of the orbital angular momentum and the
spins agree to better than with NR during the inspiral,
increasing to near merger. Nutation of the orbital plane on the
orbital time-scale agrees well between NR and PN, whereas nutation of the spin
direction shows qualitatively different behavior in PN and NR. We also examine
how the PN equations for precession and orbital-phase evolution converge with
PN order, and we quantify the impact of various choices for handling partially
known PN terms
Testing the Accuracy and Stability of Spectral Methods in Numerical Relativity
The accuracy and stability of the Caltech-Cornell pseudospectral code is
evaluated using the KST representation of the Einstein evolution equations. The
basic "Mexico City Tests" widely adopted by the numerical relativity community
are adapted here for codes based on spectral methods. Exponential convergence
of the spectral code is established, apparently limited only by numerical
roundoff error. A general expression for the growth of errors due to finite
machine precision is derived, and it is shown that this limit is achieved here
for the linear plane-wave test. All of these tests are found to be stable,
except for simulations of high amplitude gauge waves with nontrivial shift.Comment: Final version, as published in Phys. Rev. D; 13 pages, 16 figure
Vitamin D and Disease Severity in Multiple Sclerosis-Baseline Data From the Randomized Controlled Trial (EVIDIMS)
Objective: To investigate the associations between hypovitaminosis D and disease activity in a cohort of relapsing remitting multiple sclerosis (RRMS) and clinically isolated syndrome (CIS) patients.
Methods: In 51 RRMS and 2 CIS patients on stable interferon-β-1b (IFN-β-1b) treatment recruited to the EVIDIMS study (Efficacy of Vitamin D Supplementation in Multiple Sclerosis (NCT01440062) baseline serum vitamin D levels were evaluated. Patients were dichotomized based on the definition of vitamin D deficiency which is reflected by a < 30 vs. ≥ 30 ng/ml level of 25-hydroxyvitamin D (25(OH)D). Possible associations between vitamin D deficiency and both clinical and MRI features of the disease were analyzed.
Results: Median (25, 75% quartiles, Q) 25(OH)D level was 18 ng/ml (12, 24). Forty eight out of 53 (91%) patients had 25(OH)D levels < 30 ng/ml (p < 0.001). Patients with 25(OH)D ≥ 30 ng/ml had lower median (25, 75% Q) T2-weighted lesion counts [25 (24, 33)] compared to patients with 25(OH)D < 30 ng/ml [60 (36, 84), p = 0.03; adjusted for age, gender and disease duration: p < 0.001]. Expanded disability status scale (EDSS) score was negatively associated with serum 25(OH)D levels in a multiple linear regression, including age, sex, and disease duration (adjusted: p < 0.001).
Interpretation: Most patients recruited in the EVIDIMS study were vitamin D deficient. Higher 25(OH)D levels were associated with reduced T2 weighted lesion count and lower EDSS scores
On Toroidal Horizons in Binary Black Hole Inspirals
We examine the structure of the event horizon for numerical simulations of
two black holes that begin in a quasicircular orbit, inspiral, and finally
merge. We find that the spatial cross section of the merged event horizon has
spherical topology (to the limit of our resolution), despite the expectation
that generic binary black hole mergers in the absence of symmetries should
result in an event horizon that briefly has a toroidal cross section. Using
insight gained from our numerical simulations, we investigate how the choice of
time slicing affects both the spatial cross section of the event horizon and
the locus of points at which generators of the event horizon cross. To ensure
the robustness of our conclusions, our results are checked at multiple
numerical resolutions. 3D visualization data for these resolutions are
available for public access online. We find that the structure of the horizon
generators in our simulations is consistent with expectations, and the lack of
toroidal horizons in our simulations is due to our choice of time slicing.Comment: Submitted to Phys. Rev.
High-accuracy waveforms for binary black hole inspiral, merger, and ringdown
The first spectral numerical simulations of 16 orbits, merger, and ringdown
of an equal-mass non-spinning binary black hole system are presented.
Gravitational waveforms from these simulations have accumulated numerical phase
errors through ringdown of ~0.1 radian when measured from the beginning of the
simulation, and ~0.02 radian when waveforms are time and phase shifted to agree
at the peak amplitude. The waveform seen by an observer at infinity is
determined from waveforms computed at finite radii by an extrapolation process
accurate to ~0.01 radian in phase. The phase difference between this waveform
at infinity and the waveform measured at a finite radius of r=100M is about
half a radian. The ratio of final mass to initial mass is M_f/M = 0.95162 +-
0.00002, and the final black hole spin is S_f/M_f^2=0.68646 +- 0.00004.Comment: 15 pages, 11 figures; New figure added, text edited to improve
clarity, waveform made availabl
Diagnosis and treatment of NMO spectrum disorder and MOG-encephalomyelitis
Neuromyelitis optica spectrum disorders (NMOSD) are autoantibody mediated chronic inflammatory diseases. Serum antibodies (Abs) against the aquaporin-4 water channel lead to recurrent attacks of optic neuritis, myelitis and/or brainstem syndromes. In some patients with symptoms of NMOSD, no AQP4-Abs but Abs against myelin-oligodendrocyte-glycoprotein (MOG) are detectable. These clinical syndromes are now frequently referred to as "MOG-encephalomyelitis" (MOG-EM). Here we give an overview on current recommendations concerning diagnosis of NMOSD and MOG-EM. These include antibody and further laboratory testing, MR imaging and optical coherence tomography. We discuss therapeutic options of acute attacks as well as longterm immunosuppressive treatment, including azathioprine, rituximab, and immunoglobulins
Comparing Gravitational Waveform Extrapolation to Cauchy-Characteristic Extraction in Binary Black Hole Simulations
We extract gravitational waveforms from numerical simulations of black hole
binaries computed using the Spectral Einstein Code. We compare two extraction
methods: direct construction of the Newman-Penrose (NP) scalar at a
finite distance from the source and Cauchy-characteristic extraction (CCE). The
direct NP approach is simpler than CCE, but NP waveforms can be contaminated by
near-zone effects---unless the waves are extracted at several distances from
the source and extrapolated to infinity. Even then, the resulting waveforms can
in principle be contaminated by gauge effects. In contrast, CCE directly
provides, by construction, gauge-invariant waveforms at future null infinity.
We verify the gauge invariance of CCE by running the same physical simulation
using two different gauge conditions. We find that these two gauge conditions
produce the same CCE waveforms but show differences in extrapolated-
waveforms. We examine data from several different binary configurations and
measure the dominant sources of error in the extrapolated- and CCE
waveforms. In some cases, we find that NP waveforms extrapolated to infinity
agree with the corresponding CCE waveforms to within the estimated error bars.
However, we find that in other cases extrapolated and CCE waveforms disagree,
most notably for "memory" modes.Comment: 26 pages, 20 figure
Suitability of hybrid gravitational waveforms for unequal-mass binaries
This article studies sufficient accuracy criteria of hybrid post-Newtonian
(PN) and numerical relativity (NR) waveforms for parameter estimation of strong
binary black-hole sources in second- generation ground-based gravitational-wave
detectors. We investigate equal-mass non-spinning binaries with a new 33-orbit
NR waveform, as well as unequal-mass binaries with mass ratios 2, 3, 4 and 6.
For equal masses, the 33-orbit NR waveform allows us to recover previous
results and to extend the analysis toward matching at lower frequencies. For
unequal masses, the errors between different PN approximants increase with mass
ratio. Thus, at 3.5PN, hybrids for higher-mass-ratio systems would require NR
waveforms with many more gravitational-wave (GW) cycles to guarantee no adverse
impact on parameter estimation. Furthermore, we investigate the potential
improvement in hybrid waveforms that can be expected from 4th order
post-Newtonian waveforms, and find that knowledge of this 4th post-Newtonian
order would significantly improve the accuracy of hybrid waveforms.Comment: 11 pages, 14 figure
- …
