35 research outputs found

    Dissolved Organic Matter Adsorption to Model Surfaces: Adlayer Formation, Properties, and Dynamics at the Nanoscale

    No full text
    Adlayers of dissolved organic matter (DOM) form on many surfaces in natural and engineered systems and affect a number of important processes in these systems. Yet, the nanoscalar properties and dynamics of DOM adlayers remain poorly investigated. This work provides a systematic analysis of the properties and dynamics of adlayers formed from a diverse set of eight humic and fulvic acids, used as DOM models, on surfaces of self-assembled monolayers (SAMs) of different alkylthiols covalently bound to gold supports. DOM adsorption to positively charged amine-terminated SAMs resulted in the formation of water-rich adlayers with nanometer thicknesses that were relatively rigid, irreversibly adsorbed, and collapsed upon air drying, as demonstrated by combined quartz crystal microbalance and ellipsometry measurements. DOM adlayer thicknesses varied only slightly with solution pH from 5 to 8 but increased markedly with increasing ionic strength. Contact angle measurements revealed that the DOM adlayers were relatively polar, likely due to the high water contents of the adlayers. Comparing DOM adsorption to SAM-coated sensors that systematically differed in surface charge and polarity characteristics showed that electrostatics dominated DOM–surface interactions. Laccase adsorption to DOM adlayers on amine-terminated SAMs served to demonstrate the applicability of the presented experimental approach to study the interactions of (bio)­macromolecules and (nano)­particles with DOM

    Electrochemical Analyses of Redox-Active Iron Minerals: A Review of Nonmediated and Mediated Approaches

    No full text
    Redox-active minerals are ubiquitous in the environment and are involved in numerous electron transfer reactions that significantly affect biogeochemical processes and cycles as well as pollutant dynamics. As a consequence, research in different scientific disciplines is devoted to elucidating the redox properties and reactivities of minerals. This review focuses on the characterization of mineral redox properties using electrochemical approaches from an applied (bio)­geochemical and environmental analytical chemistry perspective. Establishing redox equilibria between the minerals and working electrodes is a major challenge in electrochemical measurements, which we discuss in an overview of traditional electrochemical techniques. These issues can be overcome with mediated electrochemical analyses in which dissolved redox mediators are used to increase the rate of electron transfer and to facilitate redox equilibration between working electrodes and minerals in both amperometric and potentiometric measurements. Using experimental data on an iron-bearing clay mineral, we illustrate how mediated electrochemical analyses can be employed to derive important thermodynamic and kinetic data on electron transfer to and from structural iron. We summarize anticipated methodological advancements that will further contribute to advance an improved understanding of electron transfer to and from minerals in environmentally relevant redox processes

    Quantification of Phenolic Antioxidant Moieties in Dissolved Organic Matter by Flow-Injection Analysis with Electrochemical Detection

    No full text
    Phenolic moieties in dissolved organic matter (DOM) play important roles as antioxidants in oxidation processes in natural and engineered systems. This work presents an automated and highly sensitive flow injection analysis (FIA) system coupled to both spectrophotometric and electrochemical detection to quantify electron-donating phenolic moieties in DOM by determining the number of electrons that these moieties transfer to an added chemical oxidant, the radical cation of 2,2′-azino-bis­(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS<sup>•+</sup>). The FIA system was successfully validated using Trolox as a redox standard. Highest method sensitivity was attained when combining the FIA with chronoamperometric detection, resulting in limits of quantification of picomolar amounts of Trolox and nanogram amounts of DOM (corresponding to solutions with <1 mg carbon per liter). The analysis of DOM isolates showed a strong linear correlation between the number of electrons donated and their titrated phenol contents, supporting oxidation of phenols by ABTS<sup>•+</sup>. The broad application spectrum of the FIA system to dilute natural DOM samples was illustrated by analyzing water samples collected from northern peatlands and by monitoring the oxidation of phenols in one peat sample upon incubation with a phenol oxidase. The superior analytical capability of the FIA system allows quantifying phenols and monitoring phenol dynamics in dilute DOM samples

    Antioxidant Properties of Humic Substances

    No full text
    Humic substances (HS) are heterogeneous, redox-active organic macromolecules. While electron transfer to and from HS under reducing conditions is well investigated, comparatively little is known on the electron donating (i.e., antioxidant) properties of HS under oxic conditions. In this work, the electron donating capacities (EDCs) of terrestrial and aquatic HS were quantified by mediated electrochemical oxidation over a wide range of pH values and applied redox potentials (<i>E</i><sub>h</sub>) using 2,2′-azino-bis­(3-ethylbenzthiazoline-6-sulfonic acid) as an electron transfer mediator. Electrochemical oxidation of three model humic acids (HAs) was largely irreversible, and the EDCs of these HAs increased with increasing <i>E</i><sub>h</sub> and pH. These results suggest that HS contain a wide variety of moieties that are oxidized at different potentials and that, upon oxidation, release protons and undergo irreversible follow-up reactions. At a given pH and <i>E</i><sub>h</sub>, the EDCs of the HS correlated well with their titrated phenol contents suggesting phenolic moieties as major electron donating groups in HS. Comparing the EDCs of 15 HS with their electron accepting capacities (EACs), aquatic HS had higher EDCs and lower EACs than terrestrial HS of comparable aromaticities. These results indicate that oxidative transformation of HS in the environment results in a depletion of electron donating phenolic moieties with antioxidant properties relative to the electron accepting quinone moieties

    Redox Properties of Plant Biomass-Derived Black Carbon (Biochar)

    No full text
    Soils and sediments worldwide contain appreciable amounts of thermally altered organic matter (chars). Chars contain electroactive quinoid functional groups and polycondensed aromatic sheets that were recently shown to be of biogeochemical and envirotechnical relevance. However, so far no systematic investigation of the redox properties of chars formed under different pyrolysis conditions has been performed. Here, using mediated electrochemical analysis, we show that chars made from different feedstock and over a range of pyrolysis conditions are redox-active and reversibly accept and donate up to 2 mmol electrons per gram of char. The analysis of two thermosequences revealed that chars produced at intermediate to high heat treatment temperatures (HTTs) (400–700 °C) show the highest capacities to accept and donate electrons. Combined electrochemical, elemental, and spectroscopic analyses of the thermosequence chars provide evidence that the pool of redox-active moieties is dominated by electron-donating, phenolic moieties in the low-HTT chars, by newly formed electron accepting quinone moieties in intermediate-HTT chars, and by electron accepting quinones and possibly condensed aromatics in the high-HTT chars. We propose to consider chars in environmental engineering applications that require controlled electron transfer reactions. Electroactive char components may also contribute to the redox properties of traditionally defined “humic substances”

    Enzymatic Hydrolysis of Polyester Thin Films: Real-Time Analysis of Film Mass Changes and Dissipation Dynamics

    No full text
    Cleavage of ester bonds by extracellular microbial hydrolases is considered a key step during the breakdown of biodegradable polyester materials in natural and engineered systems. Here we present a novel analytical approach for simultaneous detection of changes in the masses and rigidities of polyester thin films during enzymatic hydrolysis using a Quartz Crystal Microbalance with Dissipation monitoring (QCM-D). In experiments with poly­(butylene succinate) (PBS) and the lipase of <i>Rhizopus oryzae</i> (RoL), we detected complete hydrolysis of PBS thin films at pH 5 and 40 °C that proceeded through soft and water-rich film intermediates. Increasing the temperature from 20 to 40 °C resulted in a larger increase of the enzymatic hydrolysis rate of PBS than of nonpolymeric dibutyl adipate. This finding was ascribed to elevated accessibility of ester bonds to the catalytic site of RoL due to increasing polyester chain mobility. When the pH of the solution was changed from 5 to 7, initial hydrolysis rates were little affected, while a softer film intermediate that lead to incomplete film hydrolysis was formed. Hydrolysis dynamics of PBS, poly­(butylene adipate), poly­(lactic acid), and poly­(ethylene terephthalate) in assays with RoL showed distinct differences that we attribute to differences in the polyester structure

    Covalent Binding of Sulfamethazine to Natural and Synthetic Humic Acids: Assessing Laccase Catalysis and Covalent Bond Stability

    No full text
    Sulfonamide antibiotics form stable covalent bonds with quinone moieties in organic matter via nucleophilic addition reactions. In this work, we combined analytical electrochemistry with trace analytics to assess the catalytic role of the oxidoreductase laccase in the binding of sulfamethazine (SMZ) to Leonardite humic acid (LHA) and to four synthetic humic acids (SHAs) polymerized from low molecular weight precursors and to determine the stability of the formed bonds. In the absence of laccase, a significant portion of the added SMZ formed covalent bonds with LHA, but only a very small fraction (<0.4%) of the total quinone moieties in LHA reacted. Increasing absolute, but decreasing relative concentrations of SMZ–LHA covalent bonds with increasing initial SMZ concentration suggested that the quinone moieties in LHA covered a wide distribution in reactivity for the nucleophilic addition of SMZ. Laccase catalyzed the formation of covalent bonds by oxidizing unreactive hydroquinone moieties in LHA to reactive, electrophilic quinone moieties, of which a large fraction (5%) reacted with SMZ. Compared to LHA, the SHA showed enhanced covalent bond formation in the absence of laccase, suggesting a higher reactivity of their quinone moieties toward nucleophilic addition. This work supports that binding to soil organic matter (SOM) is an important process governing the fate, bioactivity, and extractability of sulfonamides in soils

    Adsorption of Insecticidal Cry1Ab Protein to Humic Substances. 1. Experimental Approach and Mechanistic Aspects

    No full text
    Adsorption is a key process affecting the fate of insecticidal Cry proteins (<i>Bt</i> toxins), produced by genetically modified <i>Bt</i> crops, in soils. However, the mechanisms of adsorption to soil organic matter (SOM) remain poorly understood. This work assesses the forces driving the adsorption of Cry1Ab to Leonardite humic acid (LHA), used as a model for SOM. We studied the effects of solution pH and ionic strength (<i>I</i>) on adsorption using a quartz crystal microbalance with dissipation monitoring and optical waveguide lightmode spectroscopy. Initial Cry1Ab adsorption rates were close to diffusion-limited and resulted in extensive adsorption, even at pH >6, at which LHA and Cry1Ab carry negative net charges. Adsorption increased with decreasing <i>I</i> at pH >6, indicating Cry1Ab–LHA patch-controlled electrostatic attraction via positively charged domains of Cry1Ab. Upon rinsing, only a fraction of Cry1Ab desorbed, suggesting a range of interaction energies of Cry1Ab with LHA. Different interaction energies likely resulted from nonuniformity in the LHA surface polarity, with higher Cry1Ab affinities to more apolar LHA regions due to the hydrophobic effect. Contributions from the hydrophobic effect were substantiated by comparison of the adsorption of Cry1Ab and the reference proteins albumin and lysozyme to LHA and to apolar and polar model surfaces

    Assessing the Effect of Humic Acid Redox State on Organic Pollutant Sorption by Combined Electrochemical Reduction and Sorption Experiments

    No full text
    Natural Organic Matter (NOM) is a major sorbent for organic pollutants in soils and sediments. While sorption under oxic conditions has been well investigated, possible changes in the sorption capacity of a given NOM induced by reduction have not yet been studied. Reduction of quinones to hydroquinones, the major redox active moieties in NOM, increases the number of H-donor moieties and thus may affect sorption. This work compares the sorption of four nonionic organic pollutants of different polarities (naphthalene, acetophenone, quinoline, and 2-naphthol), and of the organocation paraquat to unreduced and electrochemically reduced Leonardite Humic Acid (LHA). The redox states of reduced and unreduced LHA in all sorption experiments were stable, as demonstrated by a spectrophotometric 2,6-dichlorophenol indophenol reduction assay. The sorption isotherms of the nonionic pollutants were highly linear, while paraquat sorption was strongly concentration dependent. LHA reduction did not result in significant changes in the sorption of all tested compounds, not even of the cationic paraquat at pH 7, 9, and 11. This work provides the first evidence that changes in NOM redox state do not largely affect organic pollutant sorption, suggesting that current sorption models are applicable both to unreduced and to reduced soil and sediment NOM

    Electron-Donating Phenolic and Electron-Accepting Quinone Moieties in Peat Dissolved Organic Matter: Quantities and Redox Transformations in the Context of Peat Biogeochemistry

    No full text
    Electron-donating phenolic and electron-accepting quinone moieties in peat dissolved organic matter (DOM) are considered to play key roles in processes defining carbon cycling in northern peatlands. This work advances a flow-injection analysis system coupled to chronoamperometric detection to allow for the simultaneous and highly sensitive determination of these moieties in dilute DOM samples. Analysis of anoxic pore water and oxic pool water samples collected across an ombrotrophic bog in Sweden demonstrated the presence of both phenolic and quinone moieties in peat DOM. The pore water DOM had higher quantities of phenolic but not quinone moieties compared with commonly used model aquatic and terrestrial DOM isolates. Significantly lower phenol content in DOM from oxic pools than DOM from anoxic pore waters indicated oxidative DOM processing in the pools. Consistently, treatment of peat DOM with laccase, a phenol-oxidase, under oxic conditions resulted in an irreversible removal of phenols and reversible oxidation of hydroquinones to quinones. Electron transfer to peat DOM was fully reversible over an electrochemical reduction and subsequent O<sub>2</sub>-reoxidation cycle, supporting that quinones in peat DOM serve as regenerable microbial electron acceptors in peatlands. The results advance our understanding of redox processes involving phenolic and quinone DOM moieties and their roles in northern peatland carbon cycling
    corecore