900 research outputs found

    Retrieving Temperatures and Abundances of Exoplanet Atmospheres with High-Resolution Cross-Correlation Spectroscopy

    Get PDF
    Hi-resolution spectroscopy (R > 25,000) has recently emerged as one of the leading methods to detect atomic and molecular species in the atmospheres of exoplanets. However, it has so far been lacking in a robust method to extract quantitative constraints on temperature structure and molecular/atomic abundances. In this work we present a novel Bayesian atmospheric retrieval framework applicable to high resolution cross-correlation spectroscopy (HRCCS) that relies upon the cross-correlation between data and models to extract the planetary spectral signal. We successfully test the framework on simulated data and show that it can correctly determine Bayesian credibility intervals on atmospheric temperatures and abundances allowing for a quantitative exploration of the inherent degeneracies. Furthermore, our new framework permits us to trivially combine and explore the synergies between HRCCS and low-resolution spectroscopy (LRS) to provide maximal leverage on the information contained within each. This framework also allows us to quantitatively assess the impact of molecular line opacities at high resolution. We apply the framework to VLT CRIRES K-band spectra of HD 209458 b and HD 189733 b and retrieve abundant carbon monoxide but sub-solar abundances for water, largely invariant under different model assumptions. This confirms previous analysis of these datasets, but is possibly at odds with detections of water at different wavelengths and spectral resolutions. The framework presented here is the first step towards a true synergy between space observatories and ground-based hi-resolution observations.Comment: Accepted Version (01/16/19

    A Systematic Retrieval Analysis of Secondary Eclipse Spectra III: Diagnosing Chemical Disequilibrium in Planetary Atmospheres

    Get PDF
    Chemical disequilibrium has recently become a relevant topic in the study of the atmospheres of of transiting extrasolar planets, brown dwarfs, and directly imaged exoplanets. We present a new way of assessing whether or not a Jovian-like atmosphere is in chemical disequilibrium from observations of detectable or inferred gases such as H_2 O, CH_4, CO, and H _2. Our hypothesis, based on previous kinetic modeling studies, is that cooler atmospheres will show stronger signs of disequilibrium than hotter atmospheres. We verify this with chemistry-transport models and show that planets with temperatures less than ~ 1200 K are likely to show the strongest signs of disequilibrium due to the vertical quenching of CO, and that our new approach is able to capture this process. We also find that in certain instances a planetary composition may appear in equilibrium when it actually is not due to the degeneracy in the shape of the vertical mixing ratio profiles. We determine the state of disequilibrium in eight exoplanets using the results from secondary eclipse temperature and abundance retrievals. We find that all of the planets in our sample are consistent with thermochemical equilibrium to within 3-sigma. Future observations are needed to further constrain the abundances in order to definitively identify disequilibrium in exoplanet atmospheres

    Water, High-Altitude Condensates, and Possible Methane Depletion in the Atmosphere of the Warm Super-Neptune WASP-107b

    Full text link
    The super-Neptune exoplanet WASP-107b is an exciting target for atmosphere characterization. It has an unusually large atmospheric scale height and a small, bright host star, raising the possibility of precise constraints on its current nature and formation history. We report the first atmospheric study of WASP-107b, a Hubble Space Telescope measurement of its near-infrared transmission spectrum. We determined the planet's composition with two techniques: atmospheric retrieval based on the transmission spectrum and interior structure modeling based on the observed mass and radius. The interior structure models set a 3σ3\,\sigma upper limit on the atmospheric metallicity of 30×30\times solar. The transmission spectrum shows strong evidence for water absorption (6.5σ6.5\,\sigma confidence), and the retrieved water abundance is consistent with expectations for a solar abundance pattern. The inferred carbon-to-oxygen ratio is subsolar at 2.7σ2.7\,\sigma confidence, which we attribute to possible methane depletion in the atmosphere. The spectral features are smaller than predicted for a cloud-free composition, crossing less than one scale height. A thick condensate layer at high altitudes (0.1 - 3 mbar) is needed to match the observations. We find that physically motivated cloud models with moderate sedimentation efficiency (fsed=0.3f_\mathrm{sed} = 0.3) or hazes with a particle size of 0.3 μ\mum reproduce the observed spectral feature amplitude. Taken together, these findings serve as an illustration of the diversity and complexity of exoplanet atmospheres. The community can look forward to more such results with the high precision and wide spectral coverage afforded by future observing facilities.Comment: 10 pages, 4 figures; accepted to ApJ

    A Search for Water in the Atmosphere of HAT-P-26b Using LDSS-3C

    Get PDF
    The characterization of a physically-diverse set of transiting exoplanets is an important and necessary step towards establishing the physical properties linked to the production of obscuring clouds or hazes. It is those planets with identifiable spectroscopic features that can most effectively enhance our understanding of atmospheric chemistry and metallicity. The newly-commissioned LDSS-3C instrument on Magellan provides enhanced sensitivity and suppressed fringing in the red optical, thus advancing the search for the spectroscopic signature of water in exoplanetary atmospheres from the ground. Using data acquired by LDSS-3C and the Spitzer Space Telescope, we search for evidence of water vapor in the transmission spectrum of the Neptune-mass planet HAT-P-26b. Our measured spectrum is best explained by the presence of water vapor, a lack of potassium, and either a high-metallicity, cloud-free atmosphere or a solar-metallicity atmosphere with a cloud deck at ~10 mbar. The emergence of multi-scale-height spectral features in our data suggests that future observations at higher precision could break this degeneracy and reveal the planet's atmospheric chemical abundances. We also update HAT-P-26b's transit ephemeris, t_0 = 2455304.65218(25) BJD_TDB, and orbital period, p = 4.2345023(7) days.Comment: 9 pages, 8 figures, Accepted for publication in Ap

    New Analysis Indicates No Thermal Inversion in the Atmosphere of HD 209458b

    Full text link
    An important focus of exoplanet research is the determination of the atmospheric temperature structure of strongly irradiated gas giant planets, or hot Jupiters. HD 209458b is the prototypical exoplanet for atmospheric thermal inversions, but this assertion does not take into account recently obtained data or newer data reduction techniques. We re-examine this claim by investigating all publicly available Spitzer Space Telescope secondary-eclipse photometric data of HD 209458b and performing a self-consistent analysis. We employ data reduction techniques that minimize stellar centroid variations, apply sophisticated models to known Spitzer systematics, and account for time-correlated noise in the data. We derive new secondary-eclipse depths of 0.119 +/- 0.007%, 0.123 +/- 0.006%, 0.134 +/- 0.035%, and 0.215 +/- 0.008% in the 3.6, 4.5, 5.8, and 8.0 micron bandpasses, respectively. We feed these results into a Bayesian atmospheric retrieval analysis and determine that it is unnecessary to invoke a thermal inversion to explain our secondary-eclipse depths. The data are well-fitted by a temperature model that decreases monotonically between pressure levels of 1 and 0.01 bars. We conclude that there is no evidence for a thermal inversion in the atmosphere of HD 209458b.Comment: 8 pages, 5 figures; accepted for publication in Ap

    Characterizing Earth Analogs in Reflected Light: Atmospheric Retrieval Studies for Future Space Telescopes

    Full text link
    Space-based high contrast imaging mission concepts for studying rocky exoplanets in reflected light are currently under community study. We develop an inverse modeling framework to estimate the science return of such missions given different instrument design considerations. By combining an exoplanet albedo model, an instrument noise model, and an ensemble Markov chain Monte Carlo sampler, we explore retrievals of atmospheric and planetary properties for Earth twins as a function of signal-to-noise ratio (SNR) and resolution (RR). Our forward model includes Rayleigh scattering, single-layer water clouds with patchy coverage, and pressure-dependent absorption due to water vapor, oxygen, and ozone. We simulate data at R=70R = 70 and R=140R = 140 from 0.4-1.0 μ\mum with SNR =5,10,15,20 = 5, 10, 15, 20 at 550 nm (i.e., for HabEx/LUVOIR-type instruments). At these same SNR, we simulate data for WFIRST paired with a starshade, which includes two photometric points between 0.48-0.6 μ\mum and R=50R = 50 spectroscopy from 0.6-0.97 μ\mum. Given our noise model for WFIRST-type detectors, we find that weak detections of water vapor, ozone, and oxygen can be achieved with observations with at least R=70R = 70 / SNR =15\ = 15, or R=140R = 140 / SNR =10\ = 10 for improved detections. Meaningful constraints are only achieved with R=140R = 140 / SNR =20\ = 20 data. The WFIRST data offer limited diagnostic information, needing at least SNR = 20 to weakly detect gases. Most scenarios place limits on planetary radius, but cannot constrain surface gravity and, thus, planetary mass.Comment: Resubmitted to AAS Journals after incorporating reviewer feedback. 26 pages, 18 figure, 9 table

    Ground- and Space-based Detection of the Thermal Emission Spectrum of the Transiting Hot Jupiter KELT-2Ab

    Get PDF
    We describe the detection of water vapor in the atmosphere of the transiting hot Jupiter KELT-2Ab by treating the star-planet system as a spectroscopic binary with high-resolution, ground-based spectroscopy. We resolve the signal of the planet's motion with deep combined flux observations of the star and the planet. In total, six epochs of Keck NIRSPEC LL-band observations were obtained, and the full data set was subjected to a cross correlation analysis with a grid of self-consistent atmospheric models. We measure a radial projection of the Keplerian velocity, KPK_P, of 148 ±\pm 7 km s1^{-1}, consistent with transit measurements, and detect water vapor at 3.8σ\sigma. We combine NIRSPEC LL-band data with SpitzerSpitzer IRAC secondary eclipse data to further probe the metallicity and carbon-to-oxygen ratio of KELT-2Ab's atmosphere. While the NIRSPEC analysis provides few extra constraints on the SpitzerSpitzer data, it does provide roughly the same constraints on metallicity and carbon-to-oxygen ratio. This bodes well for future investigations of the atmospheres of non-transiting hot Jupiters.Comment: accepted to A
    corecore