315 research outputs found

    Correcting errors in synthetic DNA through consensus shuffling

    Get PDF
    Although efficient methods exist to assemble synthetic oligonucleotides into genes and genomes, these suffer from the presence of 1–3 random errors/kb of DNA. Here, we introduce a new method termed consensus shuffling and demonstrate its use to significantly reduce random errors in synthetic DNA. In this method, errors are revealed as mismatches by re-hybridization of the population. The DNA is fragmented, and mismatched fragments are removed upon binding to an immobilized mismatch binding protein (MutS). PCR assembly of the remaining fragments yields a new population of full-length sequences enriched for the consensus sequence of the input population. We show that two iterations of consensus shuffling improved a population of synthetic green fluorescent protein (GFPuv) clones from ∼60 to >90% fluorescent, and decreased errors 3.5- to 4.3-fold to final values of ∼1 error per 3500 bp. In addition, two iterations of consensus shuffling corrected a population of GFPuv clones where all members were non-functional, to a population where 82% of clones were fluorescent. Consensus shuffling should facilitate the rapid and accurate synthesis of long DNA sequences

    Rapid oligo-galacturonide induced changes in protein phosphorylation in arabidopsis

    Get PDF
    The wall-associated kinases (WAKs)1 are receptor protein kinases that bind to long polymers of cross-linked pectin in the cell wall. These plasma-membrane-associated protein kinases also bind soluble pectin fragments called oligo-galacturonides (OGs) released from the wall after pathogen attack and damage. WAKs are required for cell expansion during development but bind water soluble OGs generated from walls with a higher affinity than the wall-associated polysaccharides. OGs activate a WAKdependent, distinct stress-like response pathway to help plants resist pathogen attack. In this report, a quantitative mass-spectrometric-based phosphoproteomic analysis was used to identify Arabidopsis cellular events rapidly induced by OGs in planta. Using N14/ N15 isotopic in vivo metabolic labeling, we screened 1,000 phosphoproteins for rapid OG-induced changes and found 50 proteins with increased phosphorylation, while there were none that decreased significantly. Seven of the phosphosites within these proteins overlap with those altered by another signaling molecule plants use to indicate the presence of pathogens (the bacterial elicitor peptide Flg22), indicating distinct but overlapping pathways activated by these two types of chemicals. Genetic analysis of genes encoding 10 OG-specific and two Flg22/OG-induced phosphoproteins reveals that null mutations in eight proteins compromise the OG response. These phosphorylated proteins with genetic evidence supporting their role in the OG response include two cytoplasmic kinases, two membrane-associated scaffold proteins, a phospholipase C, a CDPK, an unknown cadmium response protein, and a motor protein. Null mutants in two proteins, the putative scaffold protein REM1.3, and a cytoplasmic receptor like kinase ROG2, enhance and suppress, respectively, a dominant WAK allele. Altogether, the results of these chemical and genetic experiments reveal the identity of several phosphorylated proteins involved in the kinase/ phosphatase-mediated signaling pathway initiated by cell wall changes

    Potential regulatory phosphorylation sites in a Medicago truncatula plasma membrane proton pump implicated during early symbiotic signaling in roots

    Get PDF
    AbstractIn plants and fungi the plasma membrane proton pump generates a large proton-motive force that performs essential functions in many processes, including solute transport and the control of cell elongation. Previous studies in yeast and higher plants have indicated that phosphorylation of an auto-inhibitory domain is involved in regulating pump activity. In this report we examine the Medicago truncatula plasma membrane proton pump gene family, and in particular MtAHA5. Yeast complementation assays with phosphomimetic mutations at six candidate sites support a phosphoregulatory role for two residues, suggesting a molecular model to explain early Nod factor-induced changes in the plasma membrane proton-motive force of legume root cells

    Medicago PhosphoProtein Database: a repository for Medicago truncatula phosphoprotein data

    Get PDF
    The ability of legume crops to fix atmospheric nitrogen via a symbiotic association with soil rhizobia makes them an essential component of many agricultural systems. Initiation of this symbiosis requires protein phosphorylation-mediated signaling in response to rhizobial signals named Nod factors. Medicago truncatula (Medicago) is the model system for studying legume biology, making the study of its phosphoproteome essential. Here, we describe the Medicago PhosphoProtein Database (MPPD; http://phospho.medicago.wisc.edu), a repository built to house phosphoprotein, phosphopeptide, and phosphosite data specific to Medicago. Currently, the MPPD holds 3,457 unique phosphopeptides that contain 3,404 non-redundant sites of phosphorylation on 829 proteins. Through the web-based interface, users are allowed to browse identified proteins or search for proteins of interest. Furthermore, we allow users to conduct BLAST searches of the database using both peptide sequences and phosphorylation motifs as queries. The data contained within the database are available for download to be investigated at the user’s discretion. The MPPD will be updated continually with novel phosphoprotein and phosphopeptide identifications, with the intent of constructing an unparalleled compendium of large-scale Medicago phosphorylation data

    Insights into the role of DNA methylation in diatoms by genome-wide profiling in Phaeodactylum tricornutum

    Get PDF
    DNA cytosine methylation is a widely conserved epigenetic mark in eukaryotes that appears to have critical roles in the regulation of genome structure and transcription. Genome-wide methylation maps have so far only been established from the supergroups Archaeplastida and Unikont. Here we report the first whole-genome methylome from a stramenopile, the marine model diatom Phaeodactylum tricornutum. Around 6% of the genome is intermittently methylated in a mosaic pattern. We find extensive methylation in transposable elements. We also detect methylation in over 320 genes. Extensive gene methylation correlates strongly with transcriptional silencing and differential expression under specific conditions. By contrast, we find that genes with partial methylation tend to be constitutively expressed. These patterns contrast with those found previously in other eukaryotes. By going beyond plants, animals and fungi, this stramenopile methylome adds significantly to our understanding of the evolution of DNA methylation in eukaryotes.Fil: Veluchamy, Alaguraj. Institut de Biologie de l'École Normale Supérieure; FranciaFil: Lin, Xin. Institut de Biologie de l'École Normale Supérieure; Francia. Xiamen University; ChinaFil: Maumus, Florian.Fil: Rivarola, Maximo Lisandro.Fil: Bhavsar, Jaysheel.Fil: Creasy, Todd.Fil: O'Brien, Kimberly.Fil: Sengamalay, Naomi A..Fil: Tallon, Luke J..Fil: Smith, Andrew D..Fil: Rayko, Edda.Fil: Ahmed, Ikhlak.Fil: Crom, Stéphane Le.Fil: Farrant, Gregory K..Fil: Sgro, Jean-Yves.Fil: Olson, Sue A..Fil: Bondurant, Sandra Splinter.Fil: Allen, Andrew.Fil: Rabinowicz, Pablo D..Fil: Sussman, Michael R..Fil: Bowler, Chris.Fil: Tirichine, Leïla

    Cost effectiveness after a pancreaticoduodenectomy: bolstering the volume argument

    Get PDF
    AbstractBackgroundThe cost implication of variability in pancreatic surgery is not well described. It was hypothesized that for a pancreaticoduodenectomy (PD), lower volume centres demonstrate worse peri-operative outcomes at higher costs.MethodsFrom 2009–2011, 9883 patients undergoing a PD were identified from the University HealthSystems Consortium (UHC) database and stratified into quintiles by annual hospital case volume. A decision analytic model was constructed to assess cost effectiveness. Total direct cost data were based on Medicare cost/charge ratios and included readmission costs when applicable.ResultsThe lowest volume centres demonstrated a higher peri-operative mortality rate (3.5% versus 1.3%, P < 0.001) compared with the highest volume centres. When both index and readmission costs were considered, the per-patient total direct cost at the lowest volume centres was 23005,or10.923 005, or 10.9% (i.e. 2263 per case) more than at the highest volume centres. One-way sensitivity analyses adjusting for peri-operative mortality (1.3% at all centres) did not materially change the cost effectiveness analysis. Differences in cost were largely recognized in the index admission; readmission costs were similar across quintiles.ConclusionsFor PD, low volume centres have higher peri-operative mortality rates and 10.9% higher cost per patient. Performance of PD at higher volume centres can lead to both better outcomes and substantial cost savings

    Randomized comparison of gemcitabine, dexamethasone, and cisplatin versus dexamethasone, cytarabine, and cisplatin chemotherapy before autologous stem-cell transplantation for relapsed and refractory aggressive lymphomas: NCIC-CTG LY.12

    Get PDF
    PURPOSE: For patients with relapsed or refractory aggressive lymphoma, we hypothesized that gemcitabine-based therapy before autologous stem-cell transplantation (ASCT) is as effective as and less toxic than standard treatment. PATIENTS AND METHODS: We randomly assigned 619 patients with relapsed/refractory aggressive lymphoma to treatment with gemcitabine, dexamethasone, and cisplatin (GDP) or to dexamethasone, cytarabine, and cisplatin (DHAP). Patients with B-cell lymphoma also received rituximab. Responding patients proceeded to stem-cell collection and ASCT. Coprimary end points were response rate after two treatment cycles and transplantation rate. The noninferiority margin for the response rate to GDP relative to DHAP was set at 10%. Secondary end points included event-free and overall survival, treatment toxicity, and quality of life. RESULTS: For the intention-to-treat population, the response rate with GDP was 45.2%; with DHAP the response rate was 44.0% (95% CI for difference, -9.0% to 6.7%), meeting protocol-defined criteria for noninferiority of GDP (P = .005). Similar results were obtained in a per-protocol analysis. The transplantation rates were 52.1% with GDP and 49.3% with DHAP (P = .44). At a median follow-up of 53 months, no differences were detected in event-free survival (HR, 0.99; stratified log-rank P = .95) or overall survival (HR, 1.03; P = .78) between GDP and DHAP. Treatment with GDP was associated with less toxicity (P < .001) and need for hospitalization (P < .001), and preserved quality of life (P = .04). CONCLUSION: For patients with relapsed or refractory aggressive lymphoma, in comparison with DHAP, treatment with GDP is associated with a noninferior response rate, similar transplantation rate, event-free survival, and overall survival, less toxicity and hospitalization, and superior quality of life

    Comparison of Vacuum MALDI and AP-MALDI Platforms for the Mass Spectrometry Imaging of Metabolites Involved in Salt Stress in Medicago truncatula

    Get PDF
    Matrix-assisted laser desorption/ionization-mass spectrometry imaging (MALDI-MSI) is routinely used to determine the spatial distributions of various biomolecules in tissues. Recently, there has been an increased interest in creating higher resolution images using sources with more focused beams. One such source, an atmospheric pressure (AP) MALDI source from MassTech, has a laser capable of reaching spatial resolutions of 10 μm. Here, the AP-MALDI source coupled with a Q Exactive HF Orbitrap platform is compared to the commercial MALDI LTQ Orbitrap XL system using Medicago truncatula root nodules. AP-MALDI parameters, such as the S-lens value, capillary temperature, and spray voltage, were optimized on the Q Exactive-HF platform for optimal detection of plant metabolites. The performance of the two systems was evaluated for sensitivity, spatial resolution, and overall ability to detect plant metabolites. The commercial MALDI LTQ Orbitrap XL was superior regarding the number of compounds detected, as at least two times more m/z were detected compared to the AP-MALDI system. However, although the AP-MALDI source requires a spatial resolution higher than 10 μm to get the best signal, the spatial resolution at 30 μm is still superior compared to the 75 μm spatial resolution achieved on the MALDI platform. The AP-MALDI system was also used to investigate the metabolites present in M. truncatula roots and root nodules under high salt and low salt conditions. A discriminative analysis with SCiLS software revealed m/z ions specific to the control and salt conditions. This analysis revealed 44 m/z ions present at relatively higher abundances in the control samples, and 77 m/z enriched in the salt samples. Liquid chromatography-tandem MS was performed to determine the putative molecular identities of some of the mass ions enriched in each sample, including, asparagine, adenosine, and nicotianamine in the control samples, and arginine and soyasaponin I in the salt treated samples

    Inefficient Quality Control of Thermosensitive Proteins on the Plasma Membrane

    Get PDF
    BACKGROUND: Misfolded proteins are generally recognised by cellular quality control machinery, which typically results in their ubiquitination and degradation. For soluble cytoplasmic proteins, degradation is mediated by the proteasome. Membrane proteins that fail to fold correctly are subject to ER associated degradation (ERAD), which involves their extraction from the membrane and subsequent proteasome-dependent destruction. Proteins with abnormal transmembrane domains can also be recognised in the Golgi or endosomal system and targeted for destruction in the vacuole/lysosome. It is much less clear what happens to membrane proteins that reach their destination, such as the cell surface, and then suffer damage. METHODOLOGY/PRINCIPAL FINDINGS: We have tested the ability of yeast cells to degrade membrane proteins to which temperature-sensitive cytoplasmic alleles of the Ura3 protein or of phage lambda repressor have been fused. In soluble form, these proteins are rapidly degraded upon temperature shift, in part due to the action of the Doa10 and San1 ubiquitin ligases and the proteasome. When tethered to the ER protein Use1, they are also degraded. However, when tethered to a plasma membrane protein such as Sso1 they escape degradation, either in the vacuole or by the proteasome. CONCLUSIONS/SIGNIFICANCE: Membrane proteins with a misfolded cytoplasmic domain appear not to be efficiently recognised and degraded once they have escaped the ER, even though their defective domains are exposed to the cytoplasm and potentially to cytoplasmic quality controls. Membrane tethering may provide a way to reduce degradation of unstable proteins
    corecore