29 research outputs found

    A pharmacological network for lifespan extension in Caenorhabditis elegans

    Get PDF
    One goal of aging research is to find drugs that delay the onset of age-associated disease. Studies in invertebrates, particularly Caenorhabditis elegans, have uncovered numerous genes involved in aging, many conserved in mammals. However, which of these encode proteins suitable for drug targeting is unknown. To investigate this question, we screened a library of compounds with known mammalian pharmacology for compounds that increase C. elegans lifespan. We identified 60 compounds that increase longevity in C. elegans, 33 of which also increased resistance to oxidative stress. Many of these compounds are drugs approved for human use. Enhanced resistance to oxidative stress was associated primarily with compounds that target receptors for biogenic amines, such as dopamine or serotonin. A pharmacological network constructed with these data reveal that lifespan extension and increased stress resistance cluster together in a few pharmacological classes, most involved in intercellular signaling. These studies identify compounds that can now be explored for beneficial effects on aging in mammals, as well as tools that can be used to further investigate the mechanisms underlying aging in C. elegans

    DNA looping induced by a transcriptional enhancer in vivo

    Get PDF
    Enhancers are DNA sequences that can activate gene transcription from remote positions. In yeast, regulatory sequences that are functionally equivalent to the metazoan enhancers are called upstream activating sequences (UASs). UASs show a lower degree of flexibility than their metazoan counterparts, but can nevertheless activate transcription from a distance of >1000 bp from the promoter. One of several models for the mechanism of action of transcriptional enhancers proposes that enhancer-bound activating proteins contact promoter-bound transcription factors and thereby get in close proximity to the promoter region with concomitant looping of the intervening DNA. We tested the mode of enhancer activity in yeast. A polymerase II-transcribed gene was paired with a remote, inducible enhancer. An independent reporter system was inserted next to the promoter to monitor the potential modes of enhancer activity. Our results show that the enhancer activated the reporter system only in the presence of a functional promoter. We also demonstrate that the heterologous expression of GAGA, a factor known to facilitate DNA loop formation, allows enhancer action in yeast over a distance of 3000 bp

    Metabolic drift in the aging brain.

    Get PDF
    Brain function is highly dependent upon controlled energy metabolism whose loss heralds cognitive impairments. This is particularly notable in the aged individuals and in age-related neurodegenerative diseases. However, how metabolic homeostasis is disrupted in the aging brain is still poorly understood. Here we performed global, metabolomic and proteomic analyses across different anatomical regions of mouse brain at different stages of its adult lifespan. Interestingly, while severe proteomic imbalance was absent, global-untargeted metabolomics revealed an energymetabolic drift or significant imbalance in core metabolite levels in aged mouse brains. Metabolic imbalance was characterized by compromised cellular energy status (NAD decline, increased AMP/ATP, purine/pyrimidine accumulation) and significantly altered oxidative phosphorylation and nucleotide biosynthesis and degradation. The central energy metabolic drift suggests a failure of the cellular machinery to restore metabostasis (metabolite homeostasis) in the aged brain and therefore an inability to respond properly to external stimuli, likely driving the alterations in signaling activity and thus in neuronal function and communication

    Rapamycin-mediated mouse lifespan extension: Late-life dosage regimes with sex-specific effects.

    Get PDF
    To see if variations in timing of rapamycin (Rapa), administered to middle aged mice starting at 20 months, would lead to different survival outcomes, we compared three dosing regimens. Initiation of Rapa at 42 ppm increased survival significantly in both male and female mice. Exposure to Rapa for a 3-month period led to significant longevity benefit in males only. Protocols in which each month of Rapa treatment was followed by a month without Rapa exposure were also effective in both sexes, though this approach was less effective than continuous exposure in female mice. Interpretation of these results is made more complicated by unanticipated variation in patterns of weight gain, prior to the initiation of the Rapa treatment, presumably due to the use of drug-free food from two different suppliers. The experimental design included tests of four other drugs, minocycline, Ξ²-guanidinopropionic acid, MitoQ, and 17-dimethylaminoethylamino-17-demethoxygeldanamycin (17-DMAG), but none of these led to a change in survival in either sex

    Rapamycin-mediated mouse lifespan extension: Late-life dosage regimes with sex-specific effects.

    Get PDF
    To see if variations in timing of rapamycin (Rapa), administered to middle aged mice starting at 20 months, would lead to different survival outcomes, we compared three dosing regimens. Initiation of Rapa at 42 ppm increased survival significantly in both male and female mice. Exposure to Rapa for a 3-month period led to significant longevity benefit in males only. Protocols in which each month of Rapa treatment was followed by a month without Rapa exposure were also effective in both sexes, though this approach was less effective than continuous exposure in female mice. Interpretation of these results is made more complicated by unanticipated variation in patterns of weight gain, prior to the initiation of the Rapa treatment, presumably due to the use of drug-free food from two different suppliers. The experimental design included tests of four other drugs, minocycline, Ξ²-guanidinopropionic acid, MitoQ, and 17-dimethylaminoethylamino-17-demethoxygeldanamycin (17-DMAG), but none of these led to a change in survival in either sex

    Antidepressants of the Serotonin-Antagonist Type Increase Body Fat and Decrease Lifespan of Adult Caenorhabditis elegans

    Get PDF
    It was recently suggested that specific antidepressants of the serotonin-antagonist type, namely mianserin and methiothepin, may exert anti-aging properties and specifically extend lifespan of the nematode C.elegans by causing a state of perceived calorie restriction (Petrascheck M, Ye X, Buck LB: An antidepressant that extends lifespan in adult Caenorhabditis elegans; Nature, Nov 22, 2007;450(7169):553–6, PMID 18033297). Using the same model organism, we instead observe a reduction of life expectancy when employing the commonly used, standardized agar-based solid-phase assay while applying the same or lower concentrations of the same antidepressants. Consistent with a well-known side-effect of these compounds in humans, antidepressants not only reduced lifespan but also increased body fat accumulation in C. elegans reflecting the mammalian phenotype. Taken together and in conflict with previously published findings, we find that antidepressants of the serotonin-antagonist type not only promote obesity, but also decrease nematode lifespan

    Computational Analysis of Lifespan Experiment Reproducibility

    No full text
    Independent reproducibility is essential to the generation of scientific knowledge. Optimizing experimental protocols to ensure reproducibility is an important aspect of scientific work. Genetic or pharmacological lifespan extensions are generally small compared to the inherent variability in mean lifespan even in isogenic populations housed under identical conditions. This variability makes reproducible detection of small but real effects experimentally challenging. In this study, we aimed to determine the reproducibility of C. elegans lifespan measurements under ideal conditions, in the absence of methodological errors or environmental or genetic background influences. To accomplish this, we generated a parametric model of C. elegans lifespan based on data collected from 5,026 wild-type N2 animals. We use this model to predict how different experimental practices, effect sizes, number of animals, and how different β€œshapes” of survival curves affect the ability to reproduce real longevity effects. We find that the chances of reproducing real but small effects are exceedingly low and would require substantially more animals than are commonly used. Our results indicate that many lifespan studies are underpowered to detect reported changes and that, as a consequence, stochastic variation alone can account for many failures to reproduce longevity results. As a remedy, we provide power of detection tables that can be used as guidelines to plan experiments with statistical power to reliably detect real changes in lifespan and limit spurious false positive results. These considerations will improve best-practices in designing lifespan experiment to increase reproducibility
    corecore