3,753 research outputs found

    Post-transcriptional regulation of the steady-state levels of mitochondrial tRNAs in HeLa cells

    Get PDF
    In human mitochondrial DNA (mtDNA), the tRNA genes are located in three different transcription units that are transcribed at three different rates. To analyze the regulation of tRNA formation by the three transcription units, we have examined the steady-state levels and metabolic properties of the tRNAs of HeLa cell mitochondria. DNA excess hybridization experiments utilizing separated strands of mtDNA and purified tRNA samples from exponential cells long term labeled with [32P]orthophosphate have revealed a steady-state level of 6 x 10(5) tRNA molecules/cell, with three-fourths being encoded in the H-strand and one-fourth in the L-strand. Hybridization of the tRNAs with a panel of M13 clones of human mtDNA containing, in most cases, single tRNA genes and a quantitation of two-dimensional electrophoretic fractionations of the tRNAs have shown that the steady-state levels of tRNA(Phe) and tRNA(Val) are two to three times higher than the average level of the other H-strand-encoded tRNAs and three to four times higher than the average level of the L-strand-encoded tRNAs. Similar experiments carried out with tRNAs isolated from cells labeled with very short pulses of [5-3H]uridine have indicated that the rates of formation of the individual tRNA species are proportional to their steady-state amounts. Therefore, the approximately 25-fold higher rate of transcription of the tRNA(Phe) and tRNA(Val) genes relative to the other H-strand tRNA genes and the 10-16-fold higher rate of transcription of the L-strand tRNA genes relative to the H-strand tRNA genes are not reflected in the steady-state levels or the rates of formation of the corresponding tRNAs. A comparison of the steady-state levels of the individual tRNAs with the corresponding codon usage for protein synthesis, as determined from the DNA sequence and the rates of synthesis of the various polypeptides, has not revealed any significant correlation between the two parameters

    Revisiting the 20th century: tales of wonder and desperation

    Get PDF
    A collection of short fiction by Michael Pearson King

    Military service and crime: new evidence

    Full text link
    BACKGROUND: Evidence indicates that a substantial proportion of military personnel are involved in high-risk and antisocial behaviors that place them at jeopardy for criminal justice system involvement. However, prior research on military service and crime has disproportionately focused on veterans from the Vietnam War era (1955–1975), and has tended to focus on either current or former military members. METHODS: This study employed data from a population-based study (i.e., National Study on Drug Use and Health [NSDUH] between 2002 and 2014). It systematically examines the prevalence of self-reported antisocial behaviors, criminal justice system involvement, and substance abuse among the US civilian population and military service members, including reservists (n = 2206) and those who reported having been separated or retired from military service (n = 20,551). These factors are further examined across the developmental spectrum of adulthood (ages 18–34, 35–49, and 50–64). RESULTS: Results showed that military members were more prone to lifetime arrests and overall substance misuse. However, additional findings emerged suggesting that, while the military population overall seems to be positively associated with higher criminal activity than that found in the civilian population, these findings were based on a specific subgroup of the veteran population. This subgroup is comprised of individuals who likely did not fit in with the military culture and were discharged from the military early in their careers. CONCLUSION: Additional research on identifying this subgroup of military members is encouraged to better concentrate on prevention and treatment measures

    A combined NMR and DFT study of Narrow Gap Semiconductors: The case of PbTe

    Full text link
    In this study we present an alternative approach to separating contributions to the NMR shift originating from the Knight shift and chemical shielding by a combination of experimental solid-state NMR results and ab initio calculations. The chemical and Knight shifts are normally distinguished through detailed studies of the resonance frequency as function of temperature and carrier concentration, followed by extrapolation of the shift to zero carrier concentration. This approach is time-consuming and requires studies of multiple samples. Here, we analyzed 207^{207}Pb and 125^{125}Te NMR spin-lattice relaxation rates and NMR shifts for bulk and nanoscale PbTe. The shifts are compared with calculations of the 207^{207}Pb and 125^{125}Te chemical shift resonances to determine the chemical shift at zero charge carrier concentration. The results are in good agreement with literature values from carrier concentration-dependent studies. The measurements are also compared to literature reports of the 207^{207}Pb and 125^{125}Te Knight shifts of nn- and pp-type PbTe semiconductors. The literature data have been converted to the currently accepted shift scale. We also provide possible evidence for the "self-cleaning effect" property of PbTe nanocrystals whereby defects are removed from the core of the particles, while preserving the crystal structure.Comment: 34 pages, 9 figure

    The Fundamental Plane of Black Hole Accretion and its Use as a Black Hole-Mass Estimator

    Get PDF
    We present an analysis of the fundamental plane of black hole accretion, an empirical correlation of the mass of a black hole (MM), its 5 GHz radio continuum luminosity (νLν\nu L_{\nu}), and its 2-10 keV X-ray power-law continuum luminosity (LXL_X). We compile a sample of black holes with primary, direct black hole-mass measurements that also have sensitive, high-spatial-resolution radio and X-ray data. Taking into account a number of systematic sources of uncertainty and their correlations with the measurements, we use Markov chain Monte Carlo methods to fit a mass-predictor function of the form log(M/108M)=μ0+ξμRlog(LR/1038ergs1)+ξμXlog(LX/1040ergs1)\log(M/10^{8}\,M_{\scriptscriptstyle \odot}) = \mu_0 + \xi_{\mu R} \log(L_R / 10^{38}\,\mathrm{erg\,s^{-1}}) + \xi_{\mu X} \log(L_X / 10^{40}\,\mathrm{erg\,s^{-1}}). Our best-fit results are μ0=0.55±0.22\mu_0 = 0.55 \pm 0.22, ξμR=1.09±0.10\xi_{\mu R} = 1.09 \pm 0.10, and ξμX=0.590.15+0.16\xi_{\mu X} = -0.59^{+0.16}_{-0.15} with the natural logarithm of the Gaussian intrinsic scatter in the log-mass direction lnϵμ=0.040.13+0.14\ln\epsilon_\mu = -0.04^{+0.14}_{-0.13}. This result is a significant improvement over our earlier mass scaling result because of the increase in active galactic nuclei sample size (from 18 to 30), improvement in our X-ray binary sample selection, better identification of Seyferts, and improvements in our analysis that takes into account systematic uncertainties and correlated uncertainties. Because of these significant improvements, we are able to consider potential influences on our sample by including all sources with compact radio and X-ray emission but ultimately conclude that the fundamental plane can empirically describe all such sources. We end with advice for how to use this as a tool for estimating black hole masses.Comment: ApJ Accepted. Online interactive version of Figure 7 available at http://kayhan.astro.lsa.umich.edu/supplementary_material/fp

    DetectiV: visualization, normalization and significance testing for pathogen-detection microarray data

    Get PDF
    DetectiV is a tool for analyzing pathogen-detection microarray datasets that allows simple visualisation, normalisation and significance testing

    The White Dwarf Cooling Sequence of NGC6397

    Get PDF
    We present the results of a deep Hubble Space Telescope (HST) exposure of the nearby globular cluster NGC6397, focussing attention on the cluster's white dwarf cooling sequence. This sequence is shown to extend over 5 magnitudes in depth, with an apparent cutoff at magnitude F814W=27.6. We demonstrate, using both artificial star tests and the detectability of background galaxies at fainter magnitudes, that the cutoff is real and represents the truncation of the white dwarf luminosity function in this cluster. We perform a detailed comparison between cooling models and the observed distribution of white dwarfs in colour and magnitude, taking into account uncertainties in distance, extinction, white dwarf mass, progenitor lifetimes, binarity and cooling model uncertainties. After marginalising over these variables, we obtain values for the cluster distance modulus and age of \mu_0 = 12.02 \pm 0.06 and T_c = 11.47 \pm 0.47Gyr (95% confidence limits). Our inferred distance and white dwarf initial-final mass relations are in good agreement with other independent determinations, and the cluster age is consistent with, but more precise than, prior determinations made using the main sequence turnoff method. In particular, within the context of the currently accepted \Lambda CDM cosmological model, this age places the formation of NGC6397 at a redshift z=3, at a time when the cosmological star formation rate was approaching its peak.Comment: 56 pages, 30 figure
    corecore