127 research outputs found

    Time-dependent density-functional theory of exciton-exciton correlations in the nonlinear optical response

    Get PDF
    We analyze possible nonlinear exciton-exciton correlation effects in the optical response of semiconductors by using a time-dependent density-functional theory (TDDFT) approach. For this purpose, we derive the nonlinear (third-order) TDDFT equation for the excitonic polarization. In this equation, the nonlinear time-dependent effects are described by the time-dependent (non-adiabatic) part of the effective exciton-exciton interaction, which depends on the exchange-correlation (XC) kernel. We apply the approach to study the nonlinear optical response of a GaAs quantum well. In particular, we calculate the 2D Fourier spectra of the system and compare it with experimental data. We find that it is necessary to use a non-adiabatic XC kernel to describe excitonic bound states - biexcitons, which are formed due to the retarded TDDFT exciton-exciton interaction

    Rabi oscillations in semiconductor multi-wave mixing response

    Full text link
    We studied the semiconductor response with respect to high intensity resonant excitation on short time scale when the contribution of the Fermi statistics of the electrons and holes prevails. We studied both the single and double pulse excitations. For the latter case we considered the time evolution of the multi-wave mixing exciton polarization. The main difference between the excitation by a single pulse or by two non-collinear pulses is that the Rabi oscillations of the multi-wave mixing response are characterized by two harmonics. Analyzing the operator dynamics governed by the external excitation we found that there are three invariant spin classes, which do not mix with the evolution of the system. Two classes correspond to the bright exciton states and one contains all dark states. We found that the dynamics of the classes is described by six frequencies and the Rabi frequencies are only two of them (one for each bright class). We discuss the effect of the dispersion of the electrons and holes and the Coulomb interaction describing the semiconductor by the semiconductor Bloch equation (SBE). We show that if initially the system is in the ground state then the SBE preserves the invariant spin classes thus proving absence of the dark excitons in the framework of this description. We found that due to the mass difference between holes of different kind additional Rabi frequencies, two of those present in the operator dynamics, should appear in the evolution of the exciton polarization.Comment: 18 pages, 5 figure

    Decoherence and Quantum Interference assisted electron trapping in a quantum dot

    Full text link
    We present a theoretical model for the dynamics of an electron that gets trapped by means of decoherence and quantum interference in the central quantum dot (QD) of a semiconductor nanoring (NR) made of five QDs, between 100 K and 300 K. The electron's dynamics is described by a master equation with a Hamiltonian based on the tight-binding model, taking into account electron-LO phonon interaction (ELOPI). Based on this configuration, the probability to trap an electron with no decoherence is almost 27%. In contrast, the probability to trap an electron with decoherence is 70% at 100 K, 63% at 200 K and 58% at 300 K. Our model provides a novel method of trapping an electron at room temperature.Comment: Revtex 4, 11 pages, 13 figure

    A 3D topological insulator quantum dot for optically controlled quantum memory and quantum computing

    Get PDF
    We present the model of a quantum dot (QD) consisting of a spherical core-bulk heterostructure made of 3D topological insulator (TI) materials, such as PbTe/Pb0.31_{0.31}Sn0.69_{0.69}Te, with bound massless and helical Weyl states existing at the interface and being confined in all three dimensions. The number of bound states can be controlled by tuning the size of the QD and the magnitude of the core and bulk energy gaps, which determine the confining potential. We demonstrate that such bound Weyl states can be realized for QD sizes of few nanometers. We identify the spin locking and the Kramers pairs, both hallmarks of 3D TIs. In contrast to topologically trivial semiconductor QDs, the confined massless Weyl states in 3D TI QDs are localized at the interface of the QD and exhibit a mirror symmetry in the energy spectrum. We find strict optical selection rules satisfied by both interband and intraband transitions that depend on the polarization of electron-hole pairs and therefore give rise to the Faraday effect due to Pauli exclusion principle. We show that the semi-classical Faraday effect can be used to read out spin quantum memory. When a 3D TI QD is embedded inside a cavity, the single-photon Faraday rotation provides the possibility to implement optically mediated quantum teleportation and quantum information processing with 3D TI QDs, where the qubit is defined by either an electron-hole pair, a single electron spin, or a single hole spin in a 3D TI QD. Remarkably, the combination of inter- and intraband transition gives rise to a large dipole moment of up to 450 Debye. Therefore, the strong-coupling regime can be reached for a cavity quality factor of Q≈104Q\approx10^{4} in the infrared wavelength regime of around 10 μ10\:\mum.Comment: 19 pages, 11 figures, RevTe

    Room-temperature superparamagnetism due to giant magnetic anisotropy in MoS_{S} defected single-layer MoS2_{2}

    Full text link
    Room-temperature superparamagnetism due to a large magnetic anisotropy energy (MAE) of a single atom magnet has always been a prerequisite for nanoscale magnetic devices. Realization of two dimensional (2D) materials such as single-layer (SL) MoS2_{2}, has provided new platforms for exploring magnetic effects, which is important for both fundamental research and for industrial applications. Here, we use density functional theory (DFT) to show that the antisite defect (MoS_{S}) in SL MoS2_{2} is magnetic in nature with a magnetic moment of μ\mu of ∼\sim 2μB\mu_{B} and, remarkably, exhibits an exceptionally large atomic scale MAE=ε∥−ε⊥=\varepsilon_{\parallel}-\varepsilon_{\perp} of ∼\sim500 meV. Our calculations reveal that this giant anisotropy is the joint effect of strong crystal field and significant spin-orbit coupling (SOC). In addition, the magnetic moment μ\mu can be tuned between 1μB\mu_{B} and 3μB\mu_{B} by varying the Fermi energy εF\varepsilon_{F}, which can be achieved either by changing the gate voltage or by chemical doping. We also show that MAE can be raised to ∼\sim1 eV with n-type doping of the MoS2_{2}:MoS_{S} sample. Our systematic investigations deepen our understanding of spin-related phenomena in SL MoS2_{2} and could provide a route to nanoscale spintronic devices.Comment: 7 pages, 7 figure
    • …
    corecore