1,665 research outputs found

    CayleyNets: Graph Convolutional Neural Networks with Complex Rational Spectral Filters

    Full text link
    The rise of graph-structured data such as social networks, regulatory networks, citation graphs, and functional brain networks, in combination with resounding success of deep learning in various applications, has brought the interest in generalizing deep learning models to non-Euclidean domains. In this paper, we introduce a new spectral domain convolutional architecture for deep learning on graphs. The core ingredient of our model is a new class of parametric rational complex functions (Cayley polynomials) allowing to efficiently compute spectral filters on graphs that specialize on frequency bands of interest. Our model generates rich spectral filters that are localized in space, scales linearly with the size of the input data for sparsely-connected graphs, and can handle different constructions of Laplacian operators. Extensive experimental results show the superior performance of our approach, in comparison to other spectral domain convolutional architectures, on spectral image classification, community detection, vertex classification and matrix completion tasks

    The Law of Naval Warfare and China’s Maritime Militia

    Get PDF
    China operates a vast network of fishing vessels that form a maritime militia equipped and trained to conduct intelligence, communications, and targeting support for the People\u27s Liberation Army Navy. Fishing vessels normally are exempt from capture or attack in the law of naval warfare unless they are integrated into the naval forces, but distinguishing between legitimate fishing vessels and maritime militia during naval warfare is virtually impossible

    ncRNA Classification with Graph Convolutional Networks

    Get PDF
    Non-coding RNA (ncRNA) are RNA sequences which don't code for a gene but instead carry important biological functions. The task of ncRNA classification consists in classifying a given ncRNA sequence into its family. While it has been shown that the graph structure of an ncRNA sequence folding is of great importance for the prediction of its family, current methods make use of machine learning classifiers on hand-crafted graph features. We improve on the state-of-the-art for this task with a graph convolutional network model which achieves an accuracy of 85.73% and an F1-score of 85.61% over 13 classes. Moreover, our model learns in an end-to-end fashion from the raw RNA graphs and removes the need for expensive feature extraction. To the best of our knowledge, this also represents the first successful application of graph convolutional networks to RNA folding data
    • …
    corecore