192 research outputs found

    Openwifi : a free and open-source IEEE802.11 SDR implementation on SoC

    No full text
    Open source Software Defined Radio (SDR) project, such as srsLTE and Open Air Interface (OAI), has been widely used for 4G/5G research. However the SDR implementation of the IEEE802.11 (Wi-Fi) is still difficult. The Wi-Fi Short InterFrame Space (SIFS) requires acknowledgement (ACK) packet being sent out in 10μs/16μs(2.4 GHz/5GHz) after receiving a packet successfully, thus the Personal Computer (PC) based SDR architecture hardly can be used due to the latency (≥100μs) between PC and Radio Frequency (RF) front-end. Researchers have to do simulation, hack a commercial chip or buy an expensive reference design to test their ideas. To change this situation, we have developed an open-source full-stack IEEE802.11a/g/n SDR implementation — openwifi. It is based on Xilinx Zynq Systemon-Chip (SoC) that includes Field Programmable Gate Array (FPGA) and ARM processor. With the low latency connection between FPGA and RF front-end, the most critical SIFS timing is achieved by implementing Physical layer (PHY) and low level Media Access Control (low MAC) in FPGA. The corresponding driver is implemented in the embedded Linux running on the ARM processor. The driver instantiates Application Programming Interfaces (APIs) defined by Linux mac80211 subsystem, which is widely used for most SoftMAC Wi-Fi chips. Researchers could study and modify openwifi easily thanks to the modular design. Compared to PC based SDR, the SoC is also a better choice for portable and embedded scenario

    Throughput optimization strategies for large-scale wireless LANs

    Get PDF
    Thanks to the active development of IEEE 802.11, the performance of wireless local area networks (WLANs) is improving by every new edition of the standard facilitating large enterprises to rely on Wi-Fi for more demanding applications. The limited number of channels in the unlicensed industrial scientific medical frequency band however is one of the key bottlenecks of Wi-Fi when scalability and robustness are points of concern. In this paper we propose two strategies for the optimization of throughput in wireless LANs: a heuristic derived from a theoretical model and a surrogate model based decision engine

    Surrogate modeling based cognitive decision engine for optimization of WLAN performance

    Get PDF
    Due to the rapid growth of wireless networks and the dearth of the electromagnetic spectrum, more interference is imposed to the wireless terminals which constrains their performance. In order to mitigate such performance degradation, this paper proposes a novel experimentally verified surrogate model based cognitive decision engine which aims at performance optimization of IEEE 802.11 links. The surrogate model takes the current state and configuration of the network as input and makes a prediction of the QoS parameter that would assist the decision engine to steer the network towards the optimal configuration. The decision engine was applied in two realistic interference scenarios where in both cases, utilization of the cognitive decision engine significantly outperformed the case where the decision engine was not deployed

    Efficient multi-objective optimization of wireless network problems on wireless testbeds

    Get PDF
    A large amount of research focuses on experimentally optimizing performance of wireless solutions. Finding the optimal performance settings typically requires investigating all possible combinations of design parameters, while the number of required experiments increases exponentially for each considered design parameter. The aim of this paper is to analyze the applicability of global optimization techniques to reduce the optimization time of wireless experimentation. In particular, the paper applies the Efficient Global Optimization (EGO) algorithm implemented in the SUrrogate MOdeling (SUMO) toolbox inside a wireless testbed. The proposed techniques are implemented and evaluated in a wireless testbed using a realistic wireless conference network problem. The performance accuracy and experimentation time of an exhaustively searched experiment is compared against a SUMO optimized experiment. In our proof of concept, the proposed SUMO optimizer reaches 99.51% of the global optimum performance while requiring 10 times less experiments compared to the exhaustive search experiment
    • …
    corecore