31 research outputs found

    Studies of Breakdowns in Liquid Nitrogen at Different Pressures Between Rogowski Electrodes

    Get PDF
    AbstractThe usage of superconducting machines in the power grid or other high energy application makes it necessary that the machine can withstand all electrical stresses which can occur during normal operation and at transient overload. To guarantee a sufficient insulation, it is essential to know the properties of the insulating material. For HTS applications liquid nitrogen is a possible cooling and insulation liquid. In this paper the influence of pressurized liquid nitrogen on the discharge voltage is observed. Therefore, a cryostat was used, that can be pressurized and the discharge voltages at 3 barabs and 5 barabs were investigated. The investigations were performed between Rogowski electrodes to guarantee a homogeneous electric field without discharges at the electrode edges. Experiments were done with gap distances up to 7mm. The liquid nitrogen was stressed with lightning surge voltage of both polarities and AC ramp with a rise of 2000V/

    Computer-aided Optical Plasma Postprocessing Applied on Model Spark Gaps

    Get PDF
    Spark gaps are used as surge protective devices (SPD class 1) for low voltage grids protection against surge currents and overvoltages. For practical research of the narrow gap plasma of spark gaps, high-speed camera recordings are used in modified transparent test models. In this test setup, current densities of 1010 A/m2 are generated. In order to optimize and automate the evaluation process of camera recordings, an image analysis tool is developed further in this contribution. After basic image improvement and segmentation, this research optimizes a detection algorithm for plasma location and distribution. As a result, the known plasma distribution gives access to significantly more information about the plasma behaviour and the spatial distribution of radiation

    Discussion on Electric Power Supply Systems for All Electric Aircraft

    Get PDF
    The electric power supply system is one of the most important research areas within sustainable and energy-efcient aviation for more- and especially all electric aircraft. This paper discusses the history in electrication, current trends with a broad overview of research activities, state of the art of electrication and an initial proposal for a short-range aircraft. It gives an overviewof the mission prole, electrical sources, approaches for the electrical distribution system and the required electrical loads. Current research aspects and questions are discussed, including voltage levels, semiconductor technology, topologies and reliability. Because of the importance for safety possible circuit breakers for the proposed concept are also presented and compared, leading to a initial proposal. Additionally, a very broad review of literature and a state of the art discussion of the wiring harness is given, showing that this topic comes with a high number of aspects and requirements. Finally, the conclusion sums up the most important results and gives an outlook on important future research topics

    Grid Code-Dependent Frequency Control Optimization in Multi-Terminal DC Networks

    Get PDF
    The increasing deployment of wind power is reducing inertia in power systems. High-voltage direct current (HVDC) technology can help to improve the stability of AC areas in which a frequency response is required. Moreover, multi-terminal DC (MTDC) networks can be optimized to distribute active power to several AC areas by droop control setting schemes that adjust converter control parameters. To this end, in this paper, particle swarm optimization (PSO) is used to improve the primary frequency response in AC areas considering several grid limitations and constraints. The frequency control uses an optimization process that minimizes the frequency nadir and the settling time in the primary frequency response. Secondly, another layer is proposed for the redistribution of active power among several AC areas, if required, without reserving wind power capacity. This method takes advantage of the MTDC topology and considers the grid code limitations at the same time. Two scenarios are defined to provide grid code-compliant frequency control.Australian Education International, Australian Government TEC2016-80242-PMinisterio de Economía y Competitividad DPI2016-75294-C2-2-

    Potentials and Technical Requirements for the Provision of Ancillary Services in Future Power Systems with Distributed Energy Resources

    Get PDF
    A decentralized supply of electrical power based on renewable energies paves the way to a sustainable power supply without nuclear energy and without the emission of greenhouse gases. This energy transition (Energiewende) entails challenges regarding the provision of Ancillary Services (AS), associated with intermittent in-feed of Distributed Energy Resources (DER) into the distribution grids. In this paper, the demand, potentials, and technical requirements for AS provision in Germany, especially in the state of Lower Saxony, are discussed. These aspects are considered from multiple perspectives across all voltage levels. Beginning with a steady state analysis that focuses on the transmission grid, an expected increment in voltage violations and line congestions is revealed. Counteracting the resulting technical limit violations requires consideration of distribution grid flexibilities among others. To address this emerging demand, the potentials for the provision of AS by components in the distribution grids are identified. However, technical concepts are also required to exploit the potential, as DER in-feed has significant impact on the functionality of conventional protection systems. The analysis in this paper indicates the need for development of concepts to provide AS in the distribution grid and detailed technical requirements within a holistic simulative approach

    Simulation Setup for Modeling the Thermal, Electric, and Magnetic Behavior of High Temperature Superconductors

    Get PDF
    AbstractThis paper presents a new simulation setup for the calculation of high temperature superconductors. This setup incorporates the magnetic and electric field dependencies as well as the current and temperature dependencies on the electrical resistivity of high temperature superconductors. Multi-conductor arrangements and 3D models can be calculated, too. The implementation in the commercially available FEM software Comsol is shown together with the underlying equations used in the simulation setup together with some exemplary simulations.Additionally, some interesting results regarding the penetration behavior of current density and electric field of high temperature superconductors are shown

    Durable Fast Charging of Lithium-Ion Batteries Based on Simulations with an Electrode Equivalent Circuit Model

    No full text
    Fast charging of lithium-ion batteries is often related to accelerated cell degradation due to lithium-plating on the negative electrode. In this contribution, an advanced electrode equivalent circuit model is used in order to simulate fast-charging strategies without lithium-plating. A novel parameterization approach based on 3-electrode cell measurements is developed, which enables precise simulation fidelity. An optimized fast-charging strategy without evoking lithium-plating was simulated that lasted about 29 min for a 0–80% state of charge. This variable current strategy was compared in experiments to a conventional constant-current–constant-voltage fast-charging strategy that lasted 20 min. The experiments showed that the optimized strategy prevented lithium-plating and led to a 2% capacity fade every 100 fast-charging cycles. In contrast, the conventional strategy led to lithium-plating, about 20% capacity fade after 100 fast-charging cycles and the fast-charging duration extended from 20 min to over 30 min due to increased cell resistances. The duration of the optimized fast charging was constant at 29 min, even after 300 cycles. The developed methods are suitable to be applied for any given lithium-ion battery configuration in order to determine the maximum fast-charging capability while ensuring safe and durable cycling conditions

    Design of a triggerable ignition circuit for model spark gap diagnostics

    No full text
    Several types of protective devices are used in the state-of-the-art electrical grids. One important element is the surge current arrester, which protects grid sections, human beings and electrical devices in case of switch off overvoltages or lightning events. The paper describes the design of an externaltriggered ignition circuit, enabling precise investigation of spark gap recovery behaviour, with no interaction between the circuit and current sources due to galvanic separation. As a result, the range of validity of the ignition circuit is determined with regard to the charging voltage of the surge current generator
    corecore