6 research outputs found

    Evaluation of the benefits of vehicle safety technology: the MUNDS study

    Get PDF
    Real-world retrospective evaluation of the safety benefits of new integrated safety technologies is hampered by the lack of sufficient data to assess early reliable benefits. This MUNDS study set out to examine if a “prospective” case-control meta-analysis had the potential to provide more rapid and rigorous analyses of vehicle and infrastructure safety improvements. To examine the validity of the approach, an analysis of the effectiveness of ESC using a consistent analytic strategy across 6 European and Australasian databases was undertaken. It was hypothesised that the approach would be valid if the results of the MUNDS analysis were consistent with those published earlier (this would confirm the suitability of the MUNDS approach). The findings confirm the hypothesis and also found stronger and more robust findings across the range of crash-types, road conditions, vehicle sizes and speed zones than previous. The study recommends that while a number of limitations were identified with the findings that need be addressed in future research, the MUNDS approach nevertheless should be adopted widely for the benefit of all vehicle occupants

    MUNDS: a new approach to evaluating safety technologies

    Get PDF
    Real-world evaluations of the safety benefits of new integrated safety technologies are hampered by the lack of sufficient data to assess early reliable benefits. To address this, a new approach was developed using a case-control, meta-analysis of coordinated national police data from Australia, Finland, Italy, New Zealand, Sweden and the UK, in assessing the benefits of Electronic Stability Control (ESC). The results showed that singlevehicle injury crash reductions varied between 21% and 54%, dependent on the speed zone of the crash and the road condition (significantly more effective in wet/icy road conditions than dry roads). For injury crashes involving more than one vehicle, ESC was twice as effective preventing crashes in high speed than lower speed zones. The findings using this new approach were consistent with those published by various equivalent individual studies, bearing in mind their wider international scope in terms of driving conditions and vehicle fleets studied. It was concluded that this new approach using a “prospective” meta-analysis method has the potential to expedite the process of evaluating emerging vehicle safety technologies that would otherwise be subject to much greater delays before sufficient evidence could be collected

    Effectiveness of low speed autonomous emergency braking in real-world rear-end crashes

    Get PDF
    This study set out to evaluate the effectiveness of low speed autonomous emergency braking (AEB) technology in current model passenger vehicles, based on real-world crash experience. The Validating Vehicle Safety through Meta-Analysis (VVSMA) group comprising a collaboration of government, industry consumer organisations and researchers, pooled data from a number of countries using a standard analysis format and the established MUND approach. Induced exposure methods were adopted to control for any extraneous effects. The findings showed a 38 percent overall reduction in rear-end crashes for vehicles fitted with AEB compared to a comparison sample of similar vehicles. There was no statistical evidence of any difference in effect between urban (≀60km/h) and rural (>60km/h) speed zones. Areas requiring further research were identified and widespread fitment through the vehicle fleet is recommended

    Built environment changes and active transport to school among adolescents:BEATS natural experiment study protocol

    Get PDF
    Introduction Natural experiments are considered a priority for examining causal associations between the built environment (BE) and physical activity (PA) because the randomised controlled trial design is rarely feasible. Few natural experiments have examined the effects of walking and cycling infrastructure on PA and active transport in adults, and none have examined the effects of such changes on PA and active transport to school among adolescents. We conducted the Built Environment and Active Transport to School (BEATS) Study in Dunedin city, New Zealand, in 2014–2017. Since 2014, on-road and off-road cycling infrastructure construction has occurred in some Dunedin neighbourhoods, including the neighbourhoods of 6 out of 12 secondary schools. Pedestrian-related infrastructure changes began in 2018. As an extension of the BEATS Study, the BEATS Natural Experiment (BEATS-NE) (2019–2022) will examine the effects of BE changes on adolescents’ active transport to school in Dunedin, New Zealand. Methods and analysis The BEATS-NE Study will employ contemporary ecological models for active transport that account for individual, social, environmental and policy factors. The published BEATS Study methodology (surveys, accelerometers, mapping, Geographic Information Science analysis and focus groups) and novel methods (environmental scan of school neighbourhoods and participatory mapping) will be used. A core component continues to be the community-based participatory approach with the sustained involvement of key stakeholders to generate locally relevant data, and facilitate knowledge translation into evidence-based policy and planning

    Examining the transport to school patterns of New Zealand  adolescents by home-to-school distance and settlement types

    No full text
    Background: Scholarship on active transport to school has largely focused on children, (large) urban areas, the umbrella term of “active transport” which considered walking and cycling together and without taking into account walking and/or cycling distance. This research examined adolescents’ patterns of transport to school in diverse settlement types and in relation to home-to-school distance in the Otago region of Aotearoa New Zealand. Methods: Patterns of transport to school by home-to-school distance, and across school locations, are described for a sample of 2,403 adolescents (age: 15.1 ± 1.4 years; 55% females) attending 23 out of 27 schools in large urban areas (n = 1,309; 11 schools), medium urban areas (n = 265; three schools), small urban areas (n = 652; four schools) and rural settings (n = 177; five schools). Empirical data were collected through an online survey, in which adolescents reported ociodemographic characteristics, travel to school, and perceptions of walking and cycling. Home-to-school distance was measured on the shortest route determined using Geographic Information Systems (GIS)-based network analysis.  Results: Transport to school patterns differed significantly by home-to-school distance and across settlement types. Profiles of different transport user groups showed significant variability in sociodemographic characteristics, family factors, average distance to school, self-reported physical activity, and perceived health. Conclusions: Initiatives to promote active transport and reduce reliance on car transport to school, whether to improve health and the environment or to reduce greenhouse gas emissions, need to pay closer attention to the settlement types, distance to school, and characteristics of different transport user modes.</p
    corecore