9,034 research outputs found

    Contrasting Phenomenology of NMR Shifts in Cuprate Superconductors

    Full text link
    Nuclear magnetic resonance (NMR) shifts, if stripped off their uncertainties, must hold key information about the electronic fluid in the cuprates. The early shift interpretation that favored a single-fluid scenario will be reviewed, as well as recent experiments that reported its failure. Thereafter, based on literature shift data for planar Cu a contrasting shift phenomenology for cuprate superconductors is developed, which is very different from the early view while being in agreement with all published data. For example, it will be shown that the hitherto used hyperfine scenario is inadequate as a large isotropic shift component is discovered. Furthermore, the changes of the temperature dependences of the shifts above and below the superconducting transitions temperature proceed according to a few rules that were not discussed before. It appears that there can be substantial spin shift at the lowest temperature if the magnetic field lies in the CuO2_2 plane, which points to a localization of spin in the 3d(x2−y2)3d(x^2-y^2) orbital. A simple model is presented based on the most fundamental findings. The analysis must have new consequences for theory of the cuprates

    Shot noise and photon-induced correlations in 500 GHz SIS detectors

    Get PDF
    Photon-induced current correlations in SIS detectors can result in an output noise that is greater or less than shot noise. Evidence of these correlations had been observed for 100 GHz rf by accurate noise measurements as reported in our previous work. We now present a detailed analysis of these current correlations for frequencies between 100 and 500 GHz. We also report new measurements of photon-induced noise in a 490 GHz SIS mixer, and discuss the Gaussian beam techniques used to eliminate the thermal background radiation. For small 490 GHz rf power, the output noise is equal to shot noise. The results of the 100 and 490 GHz photon noise measurement are summarized in context to shot noise and the effect of the current correlations predicted by the theoretical model

    Optical Flow in Mostly Rigid Scenes

    Full text link
    The optical flow of natural scenes is a combination of the motion of the observer and the independent motion of objects. Existing algorithms typically focus on either recovering motion and structure under the assumption of a purely static world or optical flow for general unconstrained scenes. We combine these approaches in an optical flow algorithm that estimates an explicit segmentation of moving objects from appearance and physical constraints. In static regions we take advantage of strong constraints to jointly estimate the camera motion and the 3D structure of the scene over multiple frames. This allows us to also regularize the structure instead of the motion. Our formulation uses a Plane+Parallax framework, which works even under small baselines, and reduces the motion estimation to a one-dimensional search problem, resulting in more accurate estimation. In moving regions the flow is treated as unconstrained, and computed with an existing optical flow method. The resulting Mostly-Rigid Flow (MR-Flow) method achieves state-of-the-art results on both the MPI-Sintel and KITTI-2015 benchmarks.Comment: 15 pages, 10 figures; accepted for publication at CVPR 201

    Trajectory Optimization Through Contacts and Automatic Gait Discovery for Quadrupeds

    Full text link
    In this work we present a trajectory Optimization framework for whole-body motion planning through contacts. We demonstrate how the proposed approach can be applied to automatically discover different gaits and dynamic motions on a quadruped robot. In contrast to most previous methods, we do not pre-specify contact switches, timings, points or gait patterns, but they are a direct outcome of the optimization. Furthermore, we optimize over the entire dynamics of the robot, which enables the optimizer to fully leverage the capabilities of the robot. To illustrate the spectrum of achievable motions, here we show eight different tasks, which would require very different control structures when solved with state-of-the-art methods. Using our trajectory Optimization approach, we are solving each task with a simple, high level cost function and without any changes in the control structure. Furthermore, we fully integrated our approach with the robot's control and estimation framework such that optimization can be run online. By demonstrating a rough manipulation task with multiple dynamic contact switches, we exemplarily show how optimized trajectories and control inputs can be directly applied to hardware.Comment: Video: https://youtu.be/sILuqJBsyK
    • …
    corecore