3,786 research outputs found

    How New York City Reduced Mass Incarceration: A Model for Change?

    Get PDF
    In this report, leading criminologists examine the connection between New York City's shift in policing strategies and the dramatic decrease in the City's incarcerated and correctional population

    A framework for the contextual analysis of computer-based learning environments

    Get PDF

    Look No Further: Adapting the Localization Sensory Window to the Temporal Characteristics of the Environment

    Full text link
    Many localization algorithms use a spatiotemporal window of sensory information in order to recognize spatial locations, and the length of this window is often a sensitive parameter that must be tuned to the specifics of the application. This letter presents a general method for environment-driven variation of the length of the spatiotemporal window based on searching for the most significant localization hypothesis, to use as much context as is appropriate but not more. We evaluate this approach on benchmark datasets using visual and Wi-Fi sensor modalities and a variety of sensory comparison front-ends under in-order and out-of-order traversals of the environment. Our results show that the system greatly reduces the maximum distance traveled without localization compared to a fixed-length approach while achieving competitive localization accuracy, and our proposed method achieves this performance without deployment-time tuning.Comment: Pre-print of article appearing in 2017 IEEE Robotics and Automation Letters. v2: incorporated reviewer feedbac

    Feature Map Filtering: Improving Visual Place Recognition with Convolutional Calibration

    Full text link
    Convolutional Neural Networks (CNNs) have recently been shown to excel at performing visual place recognition under changing appearance and viewpoint. Previously, place recognition has been improved by intelligently selecting relevant spatial keypoints within a convolutional layer and also by selecting the optimal layer to use. Rather than extracting features out of a particular layer, or a particular set of spatial keypoints within a layer, we propose the extraction of features using a subset of the channel dimensionality within a layer. Each feature map learns to encode a different set of weights that activate for different visual features within the set of training images. We propose a method of calibrating a CNN-based visual place recognition system, which selects the subset of feature maps that best encodes the visual features that are consistent between two different appearances of the same location. Using just 50 calibration images, all collected at the beginning of the current environment, we demonstrate a significant and consistent recognition improvement across multiple layers for two different neural networks. We evaluate our proposal on three datasets with different types of appearance changes - afternoon to morning, winter to summer and night to day. Additionally, the dimensionality reduction approach improves the computational processing speed of the recognition system.Comment: Accepted to the Australasian Conference on Robotics and Automation 201

    Practical improvements to class group and regulator computation of real quadratic fields

    Get PDF
    We present improvements to the index-calculus algorithm for the computation of the ideal class group and regulator of a real quadratic field. Our improvements consist of applying the double large prime strategy, an improved structured Gaussian elimination strategy, and the use of Bernstein's batch smoothness algorithm. We achieve a significant speed-up and are able to compute the ideal class group structure and the regulator corresponding to a number field with a 110-decimal digit discriminant

    Rhythmic Representations: Learning Periodic Patterns for Scalable Place Recognition at a Sub-Linear Storage Cost

    Full text link
    Robotic and animal mapping systems share many challenges and characteristics: they must function in a wide variety of environmental conditions, enable the robot or animal to navigate effectively to find food or shelter, and be computationally tractable from both a speed and storage perspective. With regards to map storage, the mammalian brain appears to take a diametrically opposed approach to all current robotic mapping systems. Where robotic mapping systems attempt to solve the data association problem to minimise representational aliasing, neurons in the brain intentionally break data association by encoding large (potentially unlimited) numbers of places with a single neuron. In this paper, we propose a novel method based on supervised learning techniques that seeks out regularly repeating visual patterns in the environment with mutually complementary co-prime frequencies, and an encoding scheme that enables storage requirements to grow sub-linearly with the size of the environment being mapped. To improve robustness in challenging real-world environments while maintaining storage growth sub-linearity, we incorporate both multi-exemplar learning and data augmentation techniques. Using large benchmark robotic mapping datasets, we demonstrate the combined system achieving high-performance place recognition with sub-linear storage requirements, and characterize the performance-storage growth trade-off curve. The work serves as the first robotic mapping system with sub-linear storage scaling properties, as well as the first large-scale demonstration in real-world environments of one of the proposed memory benefits of these neurons.Comment: Pre-print of article that will appear in the IEEE Robotics and Automation Letter

    Graph Saturation in Multipartite Graphs

    Full text link
    Let GG be a fixed graph and let F{\mathcal F} be a family of graphs. A subgraph JJ of GG is F{\mathcal F}-saturated if no member of F{\mathcal F} is a subgraph of JJ, but for any edge ee in E(G)−E(J)E(G)-E(J), some element of F{\mathcal F} is a subgraph of J+eJ+e. We let ex(F,G)\text{ex}({\mathcal F},G) and sat(F,G)\text{sat}({\mathcal F},G) denote the maximum and minimum size of an F{\mathcal F}-saturated subgraph of GG, respectively. If no element of F{\mathcal F} is a subgraph of GG, then sat(F,G)=ex(F,G)=∣E(G)∣\text{sat}({\mathcal F},G) = \text{ex}({\mathcal F}, G) = |E(G)|. In this paper, for k≥3k\ge 3 and n≥100n\ge 100 we determine sat(K3,Kkn)\text{sat}(K_3,K_k^n), where KknK_k^n is the complete balanced kk-partite graph with partite sets of size nn. We also give several families of constructions of KtK_t-saturated subgraphs of KknK_k^n for t≥4t\ge 4. Our results and constructions provide an informative contrast to recent results on the edge-density version of ex(Kt,Kkn)\text{ex}(K_t,K_k^n) from [A. Bondy, J. Shen, S. Thomass\'e, and C. Thomassen, Density conditions for triangles in multipartite graphs, Combinatorica 26 (2006), 121--131] and [F. Pfender, Complete subgraphs in multipartite graphs, Combinatorica 32 (2012), no. 4, 483--495].Comment: 16 pages, 4 figure
    • …
    corecore