98,158 research outputs found

    Morphological and population genomic evidence that human faces have evolved to signal individual identity.

    Get PDF
    Facial recognition plays a key role in human interactions, and there has been great interest in understanding the evolution of human abilities for individual recognition and tracking social relationships. Individual recognition requires sufficient cognitive abilities and phenotypic diversity within a population for discrimination to be possible. Despite the importance of facial recognition in humans, the evolution of facial identity has received little attention. Here we demonstrate that faces evolved to signal individual identity under negative frequency-dependent selection. Faces show elevated phenotypic variation and lower between-trait correlations compared with other traits. Regions surrounding face-associated single nucleotide polymorphisms show elevated diversity consistent with frequency-dependent selection. Genetic variation maintained by identity signalling tends to be shared across populations and, for some loci, predates the origin of Homo sapiens. Studies of human social evolution tend to emphasize cognitive adaptations, but we show that social evolution has shaped patterns of human phenotypic and genetic diversity as well

    Exact uncertainty approach in quantum mechanics and quantum gravity

    Full text link
    The assumption that an ensemble of classical particles is subject to nonclassical momentum fluctuations, with the fluctuation uncertainty fully determined by the position uncertainty, has been shown to lead from the classical equations of motion to the Schroedinger equation. This 'exact uncertainty' approach may be generalised to ensembles of gravitational fields, where nonclassical fluctuations are added to the field momentum densities, of a magnitude determined by the uncertainty in the metric tensor components. In this way one obtains the Wheeler-DeWitt equation of quantum gravity, with the added bonus of a uniquely specified operator ordering. No a priori assumptions are required concerning the existence of wavefunctions, Hilbert spaces, Planck's constant, linear operators, etc. Thus this approach has greater transparency than the usual canonical approach, particularly in regard to the connections between quantum and classical ensembles. Conceptual foundations and advantages are emphasised.Comment: Latex, 14 pages; plenary talk presented at the 4th Australasian Conference on General Relativity and Gravitation (Melbourne, January 7-9, 2004); Proceedings to appear in GR
    corecore