438 research outputs found

    A scoping methodological review of simulation studies comparing statistical and machine learning approaches to risk prediction for time-to-event data

    Get PDF
    BACKGROUND: There is substantial interest in the adaptation and application of so-called machine learning approaches to prognostic modelling of censored time-to-event data. These methods must be compared and evaluated against existing methods in a variety of scenarios to determine their predictive performance. A scoping review of how machine learning methods have been compared to traditional survival models is important to identify the comparisons that have been made and issues where they are lacking, biased towards one approach or misleading. METHODS: We conducted a scoping review of research articles published between 1 January 2000 and 2 December 2020 using PubMed. Eligible articles were those that used simulation studies to compare statistical and machine learning methods for risk prediction with a time-to-event outcome in a medical/healthcare setting. We focus on data-generating mechanisms (DGMs), the methods that have been compared, the estimands of the simulation studies, and the performance measures used to evaluate them. RESULTS: A total of ten articles were identified as eligible for the review. Six of the articles evaluated a method that was developed by the authors, four of which were machine learning methods, and the results almost always stated that this developed method's performance was equivalent to or better than the other methods compared. Comparisons were often biased towards the novel approach, with the majority only comparing against a basic Cox proportional hazards model, and in scenarios where it is clear it would not perform well. In many of the articles reviewed, key information was unclear, such as the number of simulation repetitions and how performance measures were calculated. CONCLUSION: It is vital that method comparisons are unbiased and comprehensive, and this should be the goal even if realising it is difficult. Fully assessing how newly developed methods perform and how they compare to a variety of traditional statistical methods for prognostic modelling is imperative as these methods are already being applied in clinical contexts. Evaluations of the performance and usefulness of recently developed methods for risk prediction should be continued and reporting standards improved as these methods become increasingly popular

    Evaporation of particle-stabilised emulsion sunscreen films

    Get PDF
    We recently showed (Binks et al., ACS Appl. Mater. Interfaces, 2016, DOI: 10.1021/acsami.6b02696) how evaporation of sunscreen films consisting of solutions of molecular UV filters leads to loss of UV light absorption and derived sun protection factor (SPF). In the present work, we investigate evaporation-induced effects for sunscreen films consisting of particle-stabilized emulsions containing a dissolved UV filter. The emulsions contained either droplets of propylene glycol (PG) in squalane (SQ), droplets of SQ in PG or droplets of decane in PG. In these different emulsion types, the SQ is involatile and shows no evaporation, the PG is volatile and evaporates relatively slowly, whereas the decane is relatively very volatile and evaporates quickly. We have measured the film mass and area, optical micrographs of the film structure, and the UV absorbance spectra during evaporation. For emulsion films containing the involatile SQ, evaporation of the PG causes collapse of the emulsion structure with some loss of specular UV absorbance due to light scattering. However, for these emulsions with droplets much larger than the wavelength of light, the light is scattered only at small forward angles so does not contribute to the diffuse absorbance and the film SPF. The UV filter remains soluble throughout the evaporation and thus the UV absorption by the filter and the SPF remain approximately constant. Both PG-in-SQ and SQ-in-PG films behave similarly and do not show area shrinkage by dewetting. In contrast, the decane-in-PG film shows rapid evaporative loss of the decane, followed by slower loss of the PG resulting in precipitation of the UV filter and film area shrinkage by dewetting which cause the UV absorbance and derived SPF to decrease. Measured UV spectra during evaporation are in reasonable agreement with spectra calculated using models discussed here

    Spectrophotometry of thin films of light absorbing particles

    Get PDF
    Thin films of dispersions of light absorbing solid particles or emulsions containing a light absorbing solute all have a non-uniform distribution of light absorbing species throughout the sample volume. This results in non-uniform light absorption over the illuminated area which causes the optical absorbance, as measured using a conventional specular UV-vis spectrophotometer, to deviate from the Beer-Lambert relationship. We have developed a theoretical model to account for the absorbance properties of such films which are shown to depend on the size and volume fraction of the light absorbing particles plus other sample variables. We have compared model predictions with measured spectra for samples consisting of emulsions containing a dissolved light absorbing solute. Using no adjustable parameters, the model successfully predicts the behaviour of non-uniform, light absorbing emulsion films with varying values of droplet size, volume fraction and other parameters

    How the sun protection factor (SPF) of sunscreen films change during solar irradiation

    Get PDF
    We have investigated how the sun protection factor (SPF) of different types of sunscreen film varies with ā€œstandardā€ solar irradiation due to photochemical processes. We have used a combination of chemical actinometry, measurement and modelling to estimate the overall quantum yields for the photoprocesses occurring for avobenzone (AVB) and isopentyl p-methoxycinnamate (MC) in either propane-1,2-diol (PG) or squalane (SQ) as solvent. Using the obtained parameters, we have developed models to calculate the evolution of the film spectra and derived SPF values for both non-scattering sunscreen films consisting of solutions of multiple UV filters and for highly scattering Pickering emulsion based sunscreen films. Model calculations for all films are in excellent agreement with film spectra measured as a function of irradiation time using different laboratory light sources. Finally, using the estimated parameters and experimentally validated models, we are able to quantitatively predict how the in vitro SPF values for different film types containing any set combination of UV filter concentrations will vary with time due to photochemical processes induced by irradiation with ā€œstandardā€ sunlight. This provides a useful tool for the rational design and optimisation of new sunscreen formulations

    Hematopoietic Lineage Transcriptome Stability and Representation in PAXgeneā„¢ Collected Peripheral Blood Utilising SPIA Single-Stranded cDNA Probes for Microarray

    Get PDF
    Peripheral blood as a surrogate tissue for transcriptome profiling holds great promise for the discovery of diagnostic and prognostic disease biomarkers, particularly when target tissues of disease are not readily available. To maximize the reliability of gene expression data generated from clinical blood samples, both the sample collection and the microarray probe generation methods should be optimized to provide stabilized, reproducible and representative gene expression profiles faithfully representing the transcriptional profiles of the constituent blood cell types present in the circulation. Given the increasing innovation in this field in recent years, we investigated a combination of methodological advances in both RNA stabilisation and microarray probe generation with the goal of achieving robust, reliable and representative transcriptional profiles from whole blood. To assess the whole blood profiles, the transcriptomes of purified blood cell types were measured and compared with the global transcriptomes measured in whole blood. The results demonstrate that a combination of PAXgeneā„¢ RNA stabilising technology and single-stranded cDNA probe generation afforded by the NuGEN Ovation RNA amplification system V2ā„¢ enables an approach that yields faithful representation of specific hematopoietic cell lineage transcriptomes in whole blood without the necessity for prior sample fractionation, cell enrichment or globin reduction. Storage stability assessments of the PAXgeneā„¢ blood samples also advocate a short, fixed room temperature storage time for all PAXgeneā„¢ blood samples collected for the purposes of global transcriptional profiling in clinical studies
    • ā€¦
    corecore