83 research outputs found
Social media for research discourse, dissemination, and collaboration in rheumatology
Social media has become an important venue for rheumatologists, patients, organizations, and other stakeholders to discuss recent research advances in diagnosis and management of rheumatic disorders. In this article, we describe the current state of how social media may enhance dissemination, discourse, and collaboration in rheumatology research. Social media may refer to social platforms like Twitter and Instagram or digital media like podcasts and other websites that are operated for providing as free, open-access medical education (FOAM). Twitter has been one of the most active social media venues and continues to host a vibrant rheumatology community. Examples of research discussions on Twitter include organic user tweets, educational threads ( tweetorials ), live-tweeting academic conferences, and journals posting recently-accepted articles. Some research collaborations have been initiated through social media interactions. Social media may also directly contribute to research by facilitating the recruitment of study participants and the collection of survey-based data. Thus, social media is an evolving and important tool to enhance research discourse, dissemination, and collaboration in rheumatology
Two-photon Lithography for 3D Magnetic Nanostructure Fabrication
Ferromagnetic materials have been utilised as recording media within data
storage devices for many decades. Confinement of the material to a two
dimensional plane is a significant bottleneck in achieving ultra-high recording
densities and this has led to the proposition of three dimensional (3D)
racetrack memories that utilise domain wall propagation along nanowires.
However, the fabrication of 3D magnetic nanostructures of complex geometry is
highly challenging and not easily achievable with standard lithography
techniques. Here, by using a combination of two-photon lithography and
electrochemical deposition, we show a new approach to construct 3D magnetic
nanostructures of complex geometry. The magnetic properties are found to be
intimately related to the 3D geometry of the structure and magnetic imaging
experiments provide evidence of domain wall pinning at a 3D nanostructured
junction
Semiconductor Lasers: Physics and Applications
Contains an introduction and reports on eight research projects.MIT Lincoln Laboratory Contract BX-6558MIT Lincoln LaboratoryU.S. Navy - Office of Naval Research/MUR
The 10m AEI prototype facility A brief overview
The AEI 10 m prototype interferometer facility is currently being constructed
at the Albert Einstein Institute in Hannover, Germany. It aims to perform
experiments for future gravitational wave detectors using advanced techniques.
Seismically isolated benches are planned to be interferometrically
interconnected and stabilized, forming a low-noise testbed inside a 100 m^3
ultra-high vacuum system. A well-stabilized high power laser will perform
differential position readout of 100 g test masses in a 10 m suspended
arm-cavity enhanced Michelson interferometer at the crossover of measurement
(shot) noise and backaction (quantum radiation pressure) noise, the so-called
Standard Quantum Limit (SQL). Such a sensitivity enables experiments in the
highly topical field of macroscopic quantum mechanics. In this article we
introduce the experimental facility and describe the methods employed,
technical details of subsystems will be covered in future papers
Search for gravitational waves from low mass compact binary coalescence in LIGO's sixth science run and Virgo's science runs 2 and 3
We report on a search for gravitational waves from coalescing compact binaries using LIGO and Virgo observations between July 7, 2009, and October 20, 2010. We searched for signals from binaries with total mass between 2 and 25Mâ; this includes binary neutron stars, binary black holes, and binaries consisting of a black hole and neutron star. The detectors were sensitive to systems up to 40 Mpc distant for binary neutron stars, and further for higher mass systems. No gravitational-wave signals were detected. We report upper limits on the rate of compact binary coalescence as a function of total mass, including the results from previous LIGO and Virgo observations. The cumulative 90% confidence rate upper limits of the binary coalescence of binary neutron star, neutron star-black hole, and binary black hole systems are 1.3Ă10â4, 3.1Ă10â5, and 6.4Ă10â6ââMpcâ3âyrâ1, respectively. These upper limits are up to a factor 1.4 lower than previously derived limits. We also report on results from a blind injection challenge. © 2012 The American Physical Societ
All-sky search for periodic gravitational waves in the full S5 LIGO data
We report on an all-sky search for periodic gravitational waves in the frequency band 50â800 Hz and with the frequency time derivative in the range of 0 through â6Ă10â9ââHz/s. Such a signal could be produced by a nearby spinning and slightly nonaxisymmetric isolated neutron star in our Galaxy. After recent improvements in the search program that yielded a 10Ă increase in computational efficiency, we have searched in two years of data collected during LIGOâs fifth science run and have obtained the most sensitive all-sky upper limits on gravitational-wave strain to date. Near 150 Hz our upper limit on worst-case linearly polarized strain amplitude h0 is 1Ă10â24, while at the high end of our frequency range we achieve a worst-case upper limit of 3.8Ă10â24 for all polarizations and sky locations. These results constitute a factor of 2 improvement upon previously published data. A new detection pipeline utilizing a loosely coherent algorithm was able to follow up weaker outliers, increasing the volume of space where signals can be detected by a factor of 10, but has not revealed any gravitational-wave signals. The pipeline has been tested for robustness with respect to deviations from the model of an isolated neutron star, such as caused by a low-mass or long-period binary companion. © 2012 The American Physical Societ
Upper limits on a stochastic gravitational-wave background using LIGO and Virgo interferometers at 600-1000 Hz
A stochastic background of gravitational waves is expected to arise from a superposition of many incoherent sources of gravitational waves, of either cosmological or astrophysical origin. This background is a target for the current generation of ground-based detectors. In this article we present the first joint search for a stochastic background using data from the LIGO and Virgo interferometers. In a frequency band of 600â1000 Hz, we obtained a 95% upper limit on the amplitude of ΩGW(f)=Ω3(f/900ââHz)3, of Ω3<0.32, assuming a value of the Hubble parameter of h100=0.71. These new limits are a factor of seven better than the previous best in this frequency band. © 2012 The American Physical Societ
All-sky search for gravitational-wave bursts in the second joint LIGO-Virgo run
We present results from a search for gravitational-wave bursts in the data collected by the LIGO and Virgo detectors between July 7, 2009 and October 20, 2010: data are analyzed when at least two of the three LIGO-Virgo detectors are in coincident operation, with a total observation time of 207 days. The analysis searches for transients of duration âČ1ââs over the frequency band 64â5000 Hz, without other assumptions on the signal waveform, polarization, direction or occurrence time. All identified events are consistent with the expected accidental background. We set frequentist upper limits on the rate of gravitational-wave bursts by combining this search with the previous LIGO-Virgo search on the data collected between November 2005 and October 2007. The upper limit on the rate of strong gravitational-wave bursts at the Earth is 1.3 events per year at 90% confidence. We also present upper limits on source rate density per year and Mpc3 for sample populations of standard-candle sources. As in the previous joint run, typical sensitivities of the search in terms of the root-sum-squared strain amplitude for these waveforms lie in the range âŒ5Ă10â22ââHzâ1/2 to âŒ1Ă10â20ââHzâ1/2. The combination of the two joint runs entails the most sensitive all-sky search for generic gravitational-wave bursts and synthesizes the results achieved by the initial generation of interferometric detectors. © 2012 The American Physical Societ
Search for gravitational waves from compact binary coalescence in LIGO and Virgo data from S5 and VSR1
We report the results of the first search for gravitational waves from compact binary coalescence using data from the Laser Interferometer Gravitational-Wave Observatory and Virgo detectors. Five months of data were collected during the Laser Interferometer Gravitational-Wave Observatoryâs S5 and Virgoâs VSR1 science runs. The search focused on signals from binary mergers with a total mass between 2 and 35Mâ. No gravitational waves are identified. The cumulative 90%-confidence upper limits on the rate of compact binary coalescence are calculated for nonspinning binary neutron stars, black hole-neutron star systems, and binary black holes to be 8.7Ă10â3ââyrâ1âL10â1, 2.2Ă10â3ââyrâ1âL10â1, and 4.4Ă10â4ââyrâ1âL10â1, respectively, where L10 is 1010 times the blue solar luminosity. These upper limits are compared with astrophysical expectations. © 2010 The American Physical Societ
- âŠ