10 research outputs found

    Additional file 1: of Pan-RAF and MEK vertical inhibition enhances therapeutic response in non-V600 BRAF mutant cells

    No full text
    Figure S1. Dose–response curves for sorafenib without or with the indicated selumetinib concentrations. Viability was measured by SRB assay after 10 days drug exposure and normalized to untreated controls (mean values +/− SEM). The respective combination indices (CI) were calculated by CompuSyn Software and are shown in Fig. 1c. (EPS 4764 kb

    Additional file 2: of Pan-RAF and MEK vertical inhibition enhances therapeutic response in non-V600 BRAF mutant cells

    No full text
    Figure S2. Analysis of cell cycle after treatment with selumetinib or sorafenib and combination. Cells were treated with selumetinib (50 nM), sorafenib (1 μM), alone or in combination for 48 h. C – control, Se – selumetinib, So – sorafenib, Se + So – selumetinib + sorafenib. (EPS 8097 kb

    The Potential Contribution of Hexavalent Chromium to the Carcinogenicity of Chrysotile Asbestos

    No full text
    Chrysotile asbestos is a carcinogenic mineral that has abundantly been used in industrial and consumer applications. The carcinogenicity of the fibers is partly governed by reactive Fe surface sites that catalyze the generation of highly toxic hydroxyl radicals (HO•) from extracellular hydrogen peroxide (H2O2). Chrysotile also contains Cr, typically in the low mass permille range. In this study, we examined the leaching of Cr from fibers at the physiological lung pH of 7.4 in the presence and absence of H2O2. Furthermore, we investigated the potential of cells from typical asbestos-burdened tissues and cancers to take up Cr leached from chrysotile in PCR expression, immunoblot, and cellular Cr uptake experiments. Finally, the contribution of Cr to fiber-mediated H2O2 decomposition and HO• generation was studied. Chromium readily dissolved from chrysotile fibers in its genotoxic and carcinogenic hexavalent redox state upon oxidation by H2O2. Lung epithelial, mesothelial, lung carcinoma, and mesothelioma cells expressed membrane-bound Cr(VI) transporters and accumulated Cr up to 10-fold relative to the Cr(VI) concentration in the spiked medium. Conversely, anion transporter inhibitors decreased cellular Cr(VI) uptake up to 45-fold. Finally, chromium associated with chrysotile neither decomposed H2O2 nor contributed to fiber-mediated HO• generation. Altogether, our results support the hypothesis that Cr may leach from inhaled chrysotile in its hexavalent state and subsequently accumulate in cells of typically asbestos-burdened tissues, which could contribute to the carcinogenicity of chrysotile fibers. However, unlike Fe, Cr did not significantly contribute to the adverse radical production of chrysotile

    EPOR is expressed in human lung ADC cell lines but exogenous rHuEPOα does not modify ADC cell proliferation in vitro.

    No full text
    <p>(A) Real-time qRT-PCR demonstrating the expression of EPOR mRNA in human lung ADC cell lines and K562 and HUVEC cells as control. The highest EPOR expression level was detected in the H1975 ADC cell line. H1975 (B), H1650 (C) and H358 (D) cells were treated with rHuEPOα at different concentrations (1, 3 IU/ml) with or without gemcitabine (1, 10 µg/ml). Cell numbers were estimated at 48 hours by sulforhodamine B colorimetric assay. Although gemcitabine significantly decreased the proliferation of ADC cells (<i>p</i> < 0.001), rHuEPO treatment (either alone or in combination with gemcitabine) did not modify ADC cell proliferation in vitro. </p

    Effect of rHuEPOα and gemcitabine treatments on the proliferation of endothelial and tumor cells in H1975 xenograft tumors.

    No full text
    <p>Representative immunofluorescent images of tumors from control (A) and rHuEPOα-treated (B) mice. Tumor sections are stained for the endothelial marker, CD31 (green), the proliferation-associated marker, BrdU (red) and for TOTO-3 (blue) highlighting EC as well as tumor cell nuclei. Arrows in (B) point at proliferating endothelial cells. (C) Labeling index of tumor and endothelial cells in 33-day-old rHuEPOα-treated or control H1975 tumors. *<i>p</i> = 0.021, versus controls; **<i>p</i> < 0.001, versus controls. </p
    corecore