4 research outputs found

    Measurement and prediction of in-cylinder friction in internal combustion engines

    Get PDF
    Currently, nearly 75% of worldwide transport is powered by internal combustion engines, with the worldwide transport sector accounting for 14% of the world’s greenhouse gas emissions. With the current trend of downsizing and reducing vehicle cost, expensive solutions such as hybrids are often not viable. One solution is to reduce engine parasitic losses, thereby indirectly improving fuel efficiency, hence emissions. In terms of frictional losses, the piston-cylinder system accounts for 50% of all such losses, which altogether contribute to 20% of all engine losses. The thesis describes an efficient analytical-numerical model in terms of computation times and CPU requirements. The model is a one dimensional analytical solution of Reynolds equation using Elrods cavitation algorithm. The model also includes determination of viscous friction as well as boundary/asperity friction based on the work of Greenwood and Tripp. Lubrication rheology is adjusted for generated hydrodynamic pressures and measured conjunctional temperature based on the cylinder liner. Model predictions are supported by a range of experimental work, from basic science measurements using an instrumented precision slider bearing rig for direct measurement of friction to the development and use of a floating liner on a motored and fired high speed, high performance internal combustion engine at the real situation practical level. The thesis highlights the development of the experimental rigs/engines as well application of state of the art instrumentation and data processing. The combined numerical and experimental analysis show that a significant proportion of friction takes place at the top-dead-center reversal in the transition from the compression to the power stroke. Under motored conditions with low in-cylinder pressures this appears to follow Poiseuille friction, whereas under fired conditions with higher in-cylinder pressures causing increased compression ring sealing a mixed and/or boundary regime of lubrication is observed and predicted. Other than at the TDC reversal in both motored and fired conditions the frictional characteristics follow in direct proportion to the piston sliding velocity, therefore showing the dominance of viscous friction. One outcome of the thesis is a validated analytical model which due to its computational efficiency can now be used in industry to provide timely predictions for the compression ring contact zone. Most significantly, the thesis has established an experimental procedure, infrastructure and data processing methods which enable the determination of the regime of lubrication and the underlying mechanisms of friction generation from basic science sliding surfaces to in situ direct measurements from a fired engine at high loads and sliding speeds

    Assessment of friction from compression ring conjunction of a high-performance internal combustion engine: a combined numerical and experimental study

    Get PDF
    The paper presents direct measurement of in-cylinder friction from a single cylinder motocross race engine under motored conditions and compares the same with a new analytical predictive method. These conditions are encountered in piston-cylinder system with the application of cylinder deactivation (CDA) technology, which is a growing trend. The analytical method takes into account the various regions within instantaneous contact of compression ring-cylinder liner, including lubricant film rupture, cavitation zone and the subsequent lubricant film reformation. The analysis also includes the effect of boundary friction and lubricant rheology. The predictions and direct measurements of cyclic friction show good agreement and indicate dominance of viscous friction under the investigated engine running conditions. In particular, it is shown that the compression ring contribution to in-cycle friction is most pronounced in the region of high cylinder pressures because of combined Poiseuille friction and some boundary solid interactions. The combined experimental-analytical approach has not hitherto been reported in literatur

    Boundary interactions of rough non-gaussian surfaces

    Get PDF
    Surface topography is important as it influences contact load-carrying capacity and operational efficiency through generated friction, as well as wear. As a result, a plethora of machining processes and surface finishing techniques have been developed. These processes yield topographies, which are often non-Gaussian, with roughness parameters that alter hierarchically according to their interaction heights. They are also subject to change through processes of rapid initial running-in wear as well as any subsequent gradual wear and embedding. The stochastic nature of the topography makes for complexity of contact mechanics of rough surfaces, which was first addressed by the pioneering work of Greenwood and Williamson, which among other issues is commemorated by this contribution. It is shown that their seminal contribution, based on idealised Gaussian topography and mean representation of asperity geometry should be extended for practical applications where surfaces are often non-Gaussian, requiring the inclusion of surface-specific data which also evolve through process of wear. The paper highlights a process dealing with practical engineering surfaces from laboratory-based testing using a sliding tribometer to accelerated fired engine testing for high performance applications of cross-hatched honed cylinder liners. Such an approach has not hitherto been reported in literature

    Measurement of in-cylinder friction using the floating liner principle

    No full text
    The regime of lubrication changes in a transient manner in many load bearing conjunctions. This is particularly true of any conjunction which is subjected to changes in contact kinematics as the result of stop-start or motion reversals and loading. One such conjunction in the IC engine is the piston-bore contact. A repercussion of these transient events under otherwise perceived steady operating condition is the underlying changes in the mechanisms giving rise to engine efficiency, such as parasitic losses, mainly due to friction. Understanding the nature of these losses is the prelude to any form of palliation. A single cylinder motocross motorbike engine’s cylinder barrel is redesigned to accept wet liners with various incorporated instrumentation. The paper describes one such barrel which incorporates an instrumented floating liner for the purpose of measurement of in-cylinder friction. The principle and design of the floating liner is described. A series of tests are carried out in order to ensure the operational integrity and repeatability of the device. The basic test includes motorised running of the engine without the cylinder head installed. This renders simplified motion of the liner, subject to resistance by friction only. In a sense, under this type of motion, the liner should undergo a form of simple harmonic motion, which is verified using a number of suitably positioned accelerometers. Some more representative tests are reported under motorised conditions with the cylinder head installed. Thus, the effect of chamber pressure is introduced. However, with no combustion pressure, heat output and resulting side forces, a better understanding of tribological conditions is accrued owing to the reduced physical interactions. The results show the dominance of a mixed regime of lubrication at the dead centre reversals
    corecore