6 research outputs found

    Synthesis and Characterization of Adducts between SF<sub>4</sub> and Oxygen Bases: Examples of O···S(IV) Chalcogen Bonding

    No full text
    Lewis acid–base adducts between SF<sub>4</sub> and the oxygen bases tetrahydrofuran, cyclopentanone, and 1,2-dimethoxyethane were synthesized and characterized by Raman spectroscopy and X-ray crystallography. Crystal structures of (SF<sub>4</sub>·OC<sub>4</sub>H<sub>8</sub>)<sub>2</sub>, SF<sub>4</sub>·(OC<sub>4</sub>H<sub>8</sub>)<sub>2</sub>, SF<sub>4</sub>·CH<sub>3</sub>OC<sub>2</sub>H<sub>4</sub>OCH<sub>3</sub>, and SF<sub>4</sub>·(OC<sub>5</sub>H<sub>8</sub>)<sub>2</sub> show weak S···O chalcogen bonding interactions ranging from 2.662(2) to 2.8692(9) Å. Caffeine, which has three Lewis basic sites, was reacted with SF<sub>4</sub> and one aliquot of HF forming C<sub>8</sub>H<sub>10</sub>N<sub>4</sub>O<sub>2</sub>·2SF<sub>4</sub>·HF, which was also characterized by X-ray crystallography. Density functional theory calculations aided in the assignment of the vibrational spectra of (SF<sub>4</sub>·OC<sub>4</sub>H<sub>8</sub>)<sub>2</sub>, SF<sub>4</sub>·(OC<sub>4</sub>H<sub>8</sub>)<sub>2</sub>, SF<sub>4</sub>·CH<sub>3</sub>OC<sub>2</sub>H<sub>4</sub>OCH<sub>3</sub>, and SF<sub>4</sub>·(OC<sub>5</sub>H<sub>8</sub>)<sub>2</sub>. Bonding was studied by natural bond order and the quantum theory of atoms in molecules analyses

    Syntheses and Characterization of W(NC<sub>6</sub>F<sub>5</sub>)F<sub>5</sub><sup>–</sup> and W<sub>2</sub>(NC<sub>6</sub>F<sub>5</sub>)<sub>2</sub>F<sub>9</sub><sup>–</sup> Salts and Computational Studies of the W(NR)F<sub>5</sub><sup>–</sup> (R = H, F, CH<sub>3</sub>, CF<sub>3</sub>, C<sub>6</sub>H<sub>5</sub>, C<sub>6</sub>F<sub>5</sub>) and W<sub>2</sub>(NC<sub>6</sub>F<sub>5</sub>)<sub>2</sub>F<sub>9</sub><sup>–</sup> Anions

    No full text
    Convenient preparative routes to fluorido­[(pentafluorophenyl)­imido]­tungstate­(VI) salts have been developed. The reaction of WF<sub>6</sub>·NC<sub>5</sub>H<sub>5</sub> or [N­(CH<sub>3</sub>)<sub>4</sub>]­[WF<sub>7</sub>] with C<sub>6</sub>F<sub>5</sub>NH<sub>2</sub> results in quantitative formation of the C<sub>5</sub>H<sub>5</sub>NH<sup>+</sup> or N­(CH<sub>3</sub>)<sub>4</sub><sup>+</sup> salt of the W­(NC<sub>6</sub>F<sub>5</sub>)­F<sub>5</sub><sup>–</sup> anion, respectively. The dissolution of [C<sub>5</sub>H<sub>5</sub>NH]­[W­(NC<sub>6</sub>F<sub>5</sub>)­F<sub>5</sub>] in anhydrous HF results in the formation of [C<sub>5</sub>H<sub>5</sub>NH]­[W<sub>2</sub>(NC<sub>6</sub>F<sub>5</sub>)<sub>2</sub>F<sub>9</sub>]. These salts have been comprehensively characterized in the solid state by X-ray crystallography and Raman spectroscopy and in solution by <sup>19</sup>F and <sup>1</sup>H NMR spectroscopy. The crystal structures of the W­(NC<sub>6</sub>F<sub>5</sub>)­F<sub>5</sub><sup>–</sup> salts reveal conformational differences in the anions, and the <sup>19</sup>F NMR spectra of these salts in CH<sub>3</sub>CN reveal coupling of the axial fluorido ligand to the <sup>14</sup>N nucleus of the imido ligand. In addition, density functional theory (DFT-B3LYP) calculations have been performed on a series of W­(NR)­F<sub>5</sub><sup>–</sup> anions (R = H, F, CH<sub>3</sub>, CF<sub>3</sub>, C<sub>6</sub>H<sub>5</sub>, C<sub>6</sub>F<sub>5</sub>) and the W<sub>2</sub>(NC<sub>6</sub>F<sub>5</sub>)<sub>2</sub>F<sub>9</sub><sup>–</sup> anion, including gas-phase geometry optimizations, vibrational frequencies, molecular orbitals, and natural bond orbital (NBO) analyses

    Interactions between SF<sub>4</sub> and Fluoride: A Crystallographic Study of Solvolysis Products of SF<sub>4</sub>·Nitrogen-Base Adducts by HF

    No full text
    Adducts between SF<sub>4</sub> and a nitrogen base are easily solvolyzed by HF, yielding the protonated nitrogen base and fluoride. Salts resulting from the solvolysis of SF<sub>4</sub>·NC<sub>5</sub>H<sub>5</sub>, SF<sub>4</sub>·NC<sub>5</sub>H<sub>4</sub>(CH<sub>3</sub>), SF<sub>4</sub>·NC<sub>5</sub>H<sub>3</sub>(CH<sub>3</sub>)<sub>2</sub>, and SF<sub>4</sub>·NC<sub>5</sub>H<sub>4</sub>N­(CH<sub>3</sub>)<sub>2</sub> have been studied by Raman spectroscopy and X-ray crystallography. Crystal structures were obtained for pyridinium salts [HNC<sub>5</sub>H<sub>5</sub><sup>+</sup>]­F<sup>–</sup>·SF<sub>4</sub> and [HNC<sub>5</sub>H<sub>5</sub><sup>+</sup>]­F<sup>–</sup>[HF]·2SF<sub>4</sub>, the 4-methylpyridinium salt [HNC<sub>5</sub>H<sub>4</sub>(CH<sub>3</sub>)<sup>+</sup>]­F<sup>–</sup>·SF<sub>4</sub>, the 2,6-methylpyridinium salt [HNC<sub>5</sub>H<sub>3</sub>(CH<sub>3</sub>)<sub>2</sub><sup>+</sup>]<sub>2</sub>[SF<sub>5</sub><sup>–</sup>]­F<sup>–</sup>·SF<sub>4</sub>, and 4-(dimethylamino)­pyridinium salts [HNC<sub>5</sub>H<sub>4</sub>N­(CH<sub>3</sub>)<sub>2</sub><sup>+</sup>]<sub>2</sub>[SF<sub>5</sub><sup>–</sup>]­F<sup>–</sup>·CH<sub>2</sub>Cl<sub>2</sub> and [NC<sub>5</sub>H<sub>4</sub>N­(CH<sub>3</sub>)<sub>2</sub><sup>+</sup>]­[HF<sub>2</sub><sup>–</sup>]·2SF<sub>4</sub>. In addition, the structure of [HNC<sub>5</sub>H<sub>4</sub>(CH<sub>3</sub>)<sup>+</sup>]­[HF<sub>2</sub><sup>–</sup>] was obtained. 4,4′-Bipyridyl reacts with SF<sub>4</sub> and 1 and 2 equiv of HF to give the 4,4′-bipyridinium salts [NH<sub>4</sub>C<sub>5</sub>–C<sub>5</sub>H<sub>4</sub>NH<sup>+</sup>]­F<sup>–</sup>·2SF<sub>4</sub> and [HNH<sub>4</sub>C<sub>5</sub>–C<sub>5</sub>H<sub>4</sub>NH<sup>2+</sup>]­2F<sup>–</sup>·4SF<sub>4</sub>, respectively. These structures exhibit a surprising range of bonding modalities and provide an extensive view of SF<sub>4</sub> and its contacts with Lewis basic groups in the solid state. The interactions range from the strong F<sub>4</sub>S–F<sup>–</sup> bond in the previously observed SF<sub>5</sub><sup>–</sup> anion to weak F<sub>4</sub>S---F<sup>–</sup>, F<sub>4</sub>S­(---F<sup>–</sup>)<sub>2</sub>, and F<sub>4</sub>S­(---FHF<sup>–</sup>)<sub>2</sub> dative bonds

    Fluoride-Ion Acceptor Properties of WSF<sub>4</sub>: Synthesis, Characterization, and Computational Study of the WSF<sub>5</sub><sup>–</sup> and W<sub>2</sub>S<sub>2</sub>F<sub>9</sub><sup>–</sup> Anions and <sup>19</sup>F NMR Spectroscopic Characterization of the W<sub>2</sub>OSF<sub>9</sub><sup>–</sup> Anion

    No full text
    The new [N­(CH<sub>3</sub>)<sub>4</sub>]­[WSF<sub>5</sub>] salt was synthesized by two preparative methods: (a) by reaction of WSF<sub>4</sub> with [N­(CH<sub>3</sub>)<sub>4</sub>]­[F] in CH<sub>3</sub>CN and (b) directly from WF<sub>6</sub> using the new sulfide-transfer reagent [N­(CH<sub>3</sub>)<sub>4</sub>]­[SSi­(CH<sub>3</sub>)<sub>3</sub>]. The [N­(CH<sub>3</sub>)<sub>4</sub>]­[WSF<sub>5</sub>] salt was characterized by Raman, IR, and <sup>19</sup>F NMR spectroscopy and [N­(CH<sub>3</sub>)<sub>4</sub>]­[WSF<sub>5</sub>]·CH<sub>3</sub>CN by X-ray crystallography. The reaction of WSF<sub>4</sub> with half an aliquot of [N­(CH<sub>3</sub>)<sub>4</sub>]­[F] yielded [N­(CH<sub>3</sub>)<sub>4</sub>]­[W<sub>2</sub>S<sub>2</sub>F<sub>9</sub>], which was characterized by Raman and <sup>19</sup>F NMR spectroscopy and by X-ray crystallography. The WSF<sub>5</sub><sup>–</sup> and W<sub>2</sub>S<sub>2</sub>F<sub>9</sub><sup>–</sup> anions were studied by density functional theory calculations. The novel [W<sub>2</sub>OSF<sub>9</sub>]<sup>−</sup> anion was observed by <sup>19</sup>F NMR spectroscopy in a CH<sub>3</sub>CN solution of WOF<sub>4</sub> and WSF<sub>5</sub><sup>–</sup>, as well as CH<sub>3</sub>CN solutions of WSF<sub>4</sub> and WOF<sub>5</sub><sup>–</sup>

    Additional file 3: Table S2. of Tumour stage distribution and survival of malignant melanoma in Germany 2002–2011

    No full text
    Malignant melanoma patients aged 35 years and above by age at diagnosis, sex, UICC stage, year of diagnosis, place of residence and ‘diagnosis during screening’, N = 34 739 (UICC 0 and X excluded) (DOCX 40 kb

    Additional file 4: Table S3. of Tumour stage distribution and survival of malignant melanoma in Germany 2002–2011

    No full text
    Relative 5-year survival of malignant melanoma patients diagnosed between 2002 and 2011, overall (UICC 0-IV, X) (N = 60 672) and for patients with invasive tumours (UICC I – IV, X) stratified by age, sex, UICC stage, ‘diagnosis during screening’ and place of residence (N = 49 351) (DOCX 39 kb
    corecore