36 research outputs found

    MixUp-MIL: Novel Data Augmentation for Multiple Instance Learning and a Study on Thyroid Cancer Diagnosis

    Full text link
    Multiple instance learning exhibits a powerful approach for whole slide image-based diagnosis in the absence of pixel- or patch-level annotations. In spite of the huge size of hole slide images, the number of individual slides is often rather small, leading to a small number of labeled samples. To improve training, we propose and investigate different data augmentation strategies for multiple instance learning based on the idea of linear interpolations of feature vectors (known as MixUp). Based on state-of-the-art multiple instance learning architectures and two thyroid cancer data sets, an exhaustive study is conducted considering a range of common data augmentation strategies. Whereas a strategy based on to the original MixUp approach showed decreases in accuracy, the use of a novel intra-slide interpolation method led to consistent increases in accuracy.Comment: MICCAI'23, https://gitlab.com/mgadermayr/mixupmi

    World Journal of Gastroenterology / Computer-aided texture analysis combined with experts' knowledge : improving endoscopic celiac disease diagnosis

    Get PDF
    AIM: To further improve the endoscopic detection of intestinal mucosa alterations due to celiac disease (CD). METHODS: We assessed a hybrid approach based on the integration of expert knowledge into the computer-based classification pipeline. A total of 2835 endoscopic images from the duodenum were recorded in 290 children using the modified immersion technique (MIT). These children underwent routine upper endoscopy for suspected CD or non-celiac upper abdominal symptoms between August 2008 and December 2014. Blinded to the clinical data and biopsy results, three medical experts> visually classified each image as normal mucosa (Marsh-0) or villous atrophy (Marsh-3). The experts decisions were further integrated into state-of-the-art texture recognition systems. Using the biopsy results as the reference standard, the classification accuracies of this hybrid approach were compared to the experts diagnoses in 27 different settings. RESULTS: Compared to the experts diagnoses, in 24 of 27 classification settings (consisting of three imaging modalities, three endoscopists and three classification approaches), the best overall classification accuracies were obtained with the new hybrid approach. In 17 of 24 classification settings, the improvements achieved with the hybrid approach were statistically significant (P < 0.05). Using the hybrid approach classification accuracies between 94% and 100% were obtained. Whereas the improvements are only moderate in the case of the most experienced expert, the results of the less experienced expert could be improved significantly in 17 out of 18 classification settings. Furthermore, the lowest classification accuracy, based on the combination of one database and one specific expert, could be improved from 80% to 95% (P < 0.001). CONCLUSION: The overall classification performance of medical experts, especially less experienced experts, can be boosted significantly by integrating expert knowledge into computer-aided diagnosis systems.KLI 429-B13(VLID)215382

    Semi-Automatic Classification Of Histopathological Images: Dealing With Inter-Slide Variations

    Get PDF
    Introduction/ Background The large size and high resolution of histopathological whole slide images renders their manual annotation time-consuming and costly. State-of-the-art computer-based segmentation approaches are generally able to classify tissue reliably, but strong inter-slide variations between training and evaluation data can cause significant decreases in classification accuracy. Aims In this study, we focus on alpha-SMA stainings of the mouse kidney, and in particular on the classification of glomerular vs. non-glomerular regions. Even though all slides had been recorded using a common staining protocol, inter-slide variations could be observed. We investigate the impact of these variations as well as methods of resolution. Methods We propose an interactive, semi-automatic tissue classification approach [1] which adapts a pre-trained classification model to the new image on which classification should be performed. Image patches for which the class (glomerular/non-glomerular) is uncertain are automatically selected and presented to the user to determine the class label. The user interaction step is repeated several times to iteratively adjust the model to the characteristics of the new image. For image representation and classification, well known methods from the literature are utilized. Specifically, we combine Local Binary Patters with the support vector classifier. Results In case of 50 available labelled sample patches of a certain whole slide image, the overall classification rate increased from 92 % to 98 % through including the interactive labelling step. Even with only 20 labelled patches, accuracy already increased to 97 %. Without a pre-trained model, if training is performed on target domain data only, 88 % (20 labelled samples) and 95 % (50 labelled samples) accuracy, respectively, were obtained. If enough target domain data was available (about 20 images), the amount of source domain data was of minor relevance. The difference in outcome between a source domain training data set containing 100 patches from one whole slide image and a set containing 700 patches from seven images was lower than 1 %. Contrarily, without target domain data, the difference in accuracy was 10 % (82 % compared to 92 %) between these two settings. Execution runtime between two interaction steps is significantly below one second (0.23 s), which is an important usability criterion. It proved to be beneficial to select specific target domain data in an active learning sense based on the currently available trained model. While experimental evaluation provided strong empirical evidence for increased classification performance with the proposed method, the additional manual effort can be kept at a low level. The labelling of e.g. 20 images per slide is surely less time consuming than the validation of a complete whole slide image processed with a fully automatic, but less reliable, segmentation approach. Finally, it should be highlighted that the proposed interaction protocol could easily be adapted to other histopathological classification or segmentation tasks, also for implementation in a clinical system.

    HOW TO EXPLOIT LARGE IMAGE DATA IN THE FIELDS OF TEXTURE CLASSIFICATION: A CASE STUDY WITH LOCAL BINARY PATTERNS Technical Report Series HOW TO EXPLOIT LARGE IMAGE DATA IN THE FIELDS OF TEXTURE CLASSIFICATION: A CASE STUDY WITH LOCAL BINARY PATTERNS

    No full text
    ABSTRACT In the fields of texture classification, the sizes of images significantly vary according to the respective classification scenario. Whereas quite small image patches mostly lead to good classification accuracies, increasing the image size sometimes even has a negative effect. In this work, we focus on derivatives of Local Binary Patterns as these feature extraction methods offer a high discriminative power and efficiency on the one hand an can be effectively analyzed on the other hand. The aim is to get new insight and furthermore to explore strategies which can help to increase the classification performance. We investigate these strategies which exploit the obviously high distinctiveness of small image patches and simultaneously the redundancy available in large image patches. Finally it can be concluded that the traditionally applied strategies for texture classification should be reconsidered in case of sufficiently large image data

    Making texture descriptors invariant to blur

    No full text
    FWF 2436
    corecore