1,765 research outputs found

    How Diverse Detrital Environments Influence Nutrient Stoichiometry Between Males and Females of the Co-Occurring Container Mosquitoes \u3ci\u3eAedes albopictus\u3c/i\u3e, \u3ci\u3eAe. Aegypti\u3c/i\u3e, and \u3ci\u3eCulex quinquefasciatus\u3c/i\u3e

    Get PDF
    Allocation patterns of carbon and nitrogen in animals are influenced by food quality and quantity, as well as by inherent metabolic and physiological constraints within organisms. Whole body stoichiometry also may vary between the sexes who differ in development rates and reproductive allocation patterns. In aquatic containers, such as tree holes and tires, detrital inputs, which vary in amounts of carbon and nitrogen, form the basis of the mosquito-dominated food web. Differences in development times and mass between male and female mosquitoes may be the result of different reproductive constraints, which could also influence patterns of nutrient allocation. We examined development time, survival, and adult mass for males and females of three co-occurring species, Aedes albopictus, Ae. aegypti, and Culex quinquefasciatus, across environments with different ratios of animal and leaf detritus. We quantified the contribution of detritus to biomass using stable isotope analysis and measured tissue carbon and nitrogen concentrations among species and between the sexes. Development times were shorter and adults were heavier for Aedes in animal versus leaf-only environments, whereas Culex development times were invariant across detritus types. Aedes displayed similar survival across detritus types whereas C. quinquefasciatus showed decreased survival with increasing leaf detritus. All species had lower values of 15N and 13C in leaf-only detritus compared to animal, however, Aedes generally had lower tissue nitrogen compared to C. quinquefasciatus. There were no differences in the C:N ratio between male and female Aedes, however, Aedes were different than C. quinquefasciatus adults, with male C. quinquefasciatus significantly higher than females. Culex quinquefasciatus was homeostatic across detrital environments. These results allow us to hypothesize an underlying stoichiometric explanation for the variation in performance of different container species under similar detrital environments, and if supported may assist in explaining the production of vector populations in nature

    Far Infrared and Submillimeter Emission from Galactic and Extragalactic Photo-Dissociation Regions

    Get PDF
    Photodissociation Region (PDR) models are computed over a wide range of physical conditions, from those appropriate to giant molecular clouds illuminated by the interstellar radiation field to the conditions experienced by circumstellar disks very close to hot massive stars. These models use the most up-to-date values of atomic and molecular data, the most current chemical rate coefficients, and the newest grain photoelectric heating rates which include treatments of small grains and large molecules. In addition, we examine the effects of metallicity and cloud extinction on the predicted line intensities. Results are presented for PDR models with densities over the range n=10^1-10^7 cm^-3 and for incident far-ultraviolet radiation fields over the range G_0=10^-0.5-10^6.5, for metallicities Z=1 and 0.1 times the local Galactic value, and for a range of PDR cloud sizes. We present line strength and/or line ratio plots for a variety of useful PDR diagnostics: [C II] 158 micron, [O I] 63 and 145 micron, [C I] 370 and 609 micron, CO J=1-0, J=2-1, J=3-2, J=6-5 and J=15-14, as well as the strength of the far-infrared continuum. These plots will be useful for the interpretation of Galactic and extragalactic far infrared and submillimeter spectra observable with ISO, SOFIA, SWAS, FIRST and other orbital and suborbital platforms. As examples, we apply our results to ISO and ground based observations of M82, NGC 278, and the Large Magellenic Cloud.Comment: 54 pages, 20 figures, accepted for publication in The Astrophysical Journa

    Surface expression, peptide repertoire, and thermostability of chicken class I molecules correlate with peptide transporter specificity.

    Get PDF
    The chicken major histocompatibility complex (MHC) has strong genetic associations with resistance and susceptibility to certain infectious pathogens. The cell surface expression level of MHC class I molecules varies as much as 10-fold between chicken haplotypes and is inversely correlated with diversity of peptide repertoire and with resistance to Marek's disease caused by an oncogenic herpesvirus. Here we show that the average thermostability of class I molecules isolated from cells also varies, being higher for high-expressing MHC haplotypes. However, we find roughly the same amount of class I protein synthesized by high- and low-expressing MHC haplotypes, with movement to the cell surface responsible for the difference in expression. Previous data show that chicken TAP genes have high allelic polymorphism, with peptide translocation specific for each MHC haplotype. Here we use assembly assays with peptide libraries to show that high-expressing B15 class I molecules can bind a much wider variety of peptides than are found on the cell surface, with the B15 TAPs restricting the peptides available. In contrast, the translocation specificity of TAPs from the low-expressing B21 haplotype is even more permissive than the promiscuous binding shown by the dominantly expressed class I molecule. B15/B21 heterozygote cells show much greater expression of B15 class I molecules than B15/B15 homozygote cells, presumably as a result of receiving additional peptides from the B21 TAPs. Thus, chicken MHC haplotypes vary in several correlated attributes, with the most obvious candidate linking all these properties being molecular interactions within the peptide-loading complex (PLC).This work was originally supported by core funding to the Basel Institute for Immunology (which was founded and supported by F. Hoffmann-La Roche & Co. Ltd., CH-4005 Basel, Switzerland), then by core funding to the Institute for Animal Health [now re-branded the Pirbright Institute, sponsored by the Biotechnology and Biological Sciences Research Council (BBSRC) of the UK] and finally by programme grant 089305 from the Wellcome Trust to JK.This is the author accepted manuscript. The final version is available from PNAS via http://dx.doi.org/10.1073/pnas.151185911

    High Repetition-Rate Pulse Shaping of a Spectrally Broadened Yb Femtosecond Laser

    Full text link
    We demonstrate compression and shaping of few cycle pulses from a high average power Ytterbium laser system. The pulses from a commercial 20 W, 100 kHz Yb laser system are spectrally broadened in two-stages using gas-filled, stretched hollow-core fibers and then compressed and shaped in an acousto-optic modulator-based pulse-shaper. The pulse-shaper allows for compression, characterization, and shaping all in one system, producing ~10 fs pulses with 50 uJ of energ

    Semiclassical approximations for Hamiltonians with operator-valued symbols

    Full text link
    We consider the semiclassical limit of quantum systems with a Hamiltonian given by the Weyl quantization of an operator valued symbol. Systems composed of slow and fast degrees of freedom are of this form. Typically a small dimensionless parameter ε≪1\varepsilon\ll 1 controls the separation of time scales and the limit ε→0\varepsilon\to 0 corresponds to an adiabatic limit, in which the slow and fast degrees of freedom decouple. At the same time ε→0\varepsilon\to 0 is the semiclassical limit for the slow degrees of freedom. In this paper we show that the ε\varepsilon-dependent classical flow for the slow degrees of freedom first discovered by Littlejohn and Flynn, coming from an \epsi-dependent classical Hamilton function and an ε\varepsilon-dependent symplectic form, has a concrete mathematical and physical meaning: Based on this flow we prove a formula for equilibrium expectations, an Egorov theorem and transport of Wigner functions, thereby approximating properties of the quantum system up to errors of order ε2\varepsilon^2. In the context of Bloch electrons formal use of this classical system has triggered considerable progress in solid state physics. Hence we discuss in some detail the application of the general results to the Hofstadter model, which describes a two-dimensional gas of non-interacting electrons in a constant magnetic field in the tight-binding approximation.Comment: Final version to appear in Commun. Math. Phys. Results have been strengthened with only minor changes to the proofs. A section on the Hofstadter model as an application of the general theory was added and the previous section on other applications was remove

    Blueberry Intake Alters Skeletal Muscle and Adipose Tissue Peroxisome Proliferator-Activated Receptor Activity and Reduces Insulin Resistance in Obese Rats

    Full text link
    Metabolic syndrome can precede the development of type 2 diabetes and cardiovascular disease and includes phenotypes such as obesity, systemic inflammation, insulin resistance, and hyperlipidemia. A recent epidemiological study indicated that blueberry intake reduced cardiovascular mortality in humans, but the possible genetic mechanisms of this effect are unknown. Blueberries are a rich source of anthocyanins, and anthocyanins can alter the activity of peroxisome proliferator-activated receptors (PPARs), which affect energy substrate metabolism. The effect of blueberry intake was assessed in obesity-prone rats. Zucker Fatty and Zucker Lean rats were fed a higher-fat diet (45% of kcal) or a lower-fat diet (10% of kcal) containing 2% (wt/wt) freeze-dried whole highbush blueberry powder or added sugars to match macronutrient and calorie content. In Zucker Fatty rats fed a high-fat diet, the addition of blueberry reduced triglycerides, fasting insulin, homeostasis model index of insulin resistance, and glucose area under the curve. Blueberry intake also reduced abdominal fat mass, increased adipose and skeletal muscle PPAR activity, and affected PPAR transcripts involved in fat oxidation and glucose uptake/oxidation. In Zucker Fatty rats fed a low-fat diet, the addition of blueberry also significantly reduced liver weight, body weight, and total fat mass. Finally, Zucker Lean rats fed blueberry had higher body weight and reduced triglycerides, but all other measures were unaffected. In conclusion, whole blueberry intake reduced phenotypes of metabolic syndrome in obesity-prone rats and affected PPAR gene transcripts in adipose and muscle tissue involved in fat and glucose metabolism.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/90448/1/jmf-2E2010-2E0292.pd

    The Failure of Northern Rock: A multi-dimensional Case Study

    Full text link
    In August 2007 the United Kingdom experienced its first bank run in over 140 years. Although Northern Rock was not a particularly large bank (it was at the time ranked 7th in terms of assets) it was nevertheless a significant retail bank and a substantial mortgage lender. In fact, ten years earlier it had converted from a mutual building society whose activities were limited by regulation largely to retail deposits and mortgages. Graphic television news pictures showed very long queues outside the bank as depositors rushed to withdraw their deposits. There was always a fear that this could spark a systemic run on bank deposits. After failed attempts to secure a buyer in the private sector, the government nationalised the bank and, for the first time, in effect socialised the credit risk of the bank. It is now a fully state-owned bank..

    Crystallographic structure of ultrathin Fe films on Cu(100)

    Full text link
    We report bcc-like crystal structures in 2-4 ML Fe films grown on fcc Cu(100) using scanning tunneling microscopy. The local bcc structure provides a straightforward explanation for their frequently reported outstanding magnetic properties, i.e., ferromagnetic ordering in all layers with a Curie temperature above 300 K. The non-pseudomorphic structure, which becomes pseudomorphic above 4 ML film thickness is unexpected in terms of conventional rules of thin film growth and stresses the importance of finite thickness effects in ferromagnetic ultrathin films.Comment: 4 pages, 3 figures, RevTeX/LaTeX2.0

    Long QT Syndrome and Pregnancy

    Get PDF
    ObjectivesThis study was designed to investigate the clinical course of women with long QT syndrome (LQTS) throughout their potential childbearing years.BackgroundOnly limited data exist regarding the risks associated with pregnancy in women with LQTS.MethodsThe risk of experiencing an adverse cardiac event, including syncope, aborted cardiac arrest, and sudden death, during and after pregnancy was analyzed for women who had their first birth from 1980 to 2003 (n = 391). Time-dependent Kaplan-Meier and Cox proportional hazard methods were used to evaluate the risk of cardiac events during different peripartum periods.ResultsCompared with a time period before a woman’s first conception, the pregnancy time was associated with a reduced risk of cardiac events (hazard ratio [HR] 0.28, 95% confidence interval [CI] 0.10 to 0.76, p = 0.01), whereas the 9-month postpartum time had an increased risk (HR 2.7, 95% CI 1.8 to 4.3, p < 0.001). After the 9-month postpartum period, the risk was similar to the period before the first conception (HR 0.91, 95% CI 0.55 to 1.5, p = 0.70). Genotype analysis (n = 153) showed that women with the LQT2 genotype were more likely to experience a cardiac event than women with the LQT1 or LQT3 genotype. The cardiac event risk during the high-risk postpartum period was reduced among women using beta-blocker therapy (HR 0.34, 95% CI 0.14 to 0.84, p = 0.02).ConclusionsWomen with LQTS have a reduced risk for cardiac events during pregnancy, but an increased risk during the 9-month postpartum period, especially among women with the LQT2 genotype. Beta-blockers were associated with a reduction in cardiac events during the high-risk postpartum time period
    • …
    corecore