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The chicken major histocompatibility complex (MHC) has strong
genetic associations with resistance and susceptibility to certain
infectious pathogens. The cell surface expression level of MHC
class I molecules varies as much as ten-fold between chicken
haplotypes, and is inversely correlated with diversity of peptide
repertoire and with resistance to Marek’s disease caused by an
oncogenic herpesvirus. Here we show that the average thermosta-
bility of class I molecules isolated from cells also varies, being
higher for high expressing MHC haplotypes. However, we find
roughly the same amount of class I protein synthesized by high
and low expressing MHC haplotypes, with movement to the cell
surface responsible for the difference in expression. Previous data
shows that chicken TAP genes have high allelic polymorphism,
with peptide translocation specific for each MHC haplotype. Here
we use assembly assays with peptide libraries to show that high
expressing B15 class I molecules can bind a much wider variety
of peptides than are found on the cell surface, with the B15 TAPs
restricting the peptides available. In contrast, the translocation
specificity of TAPs from the low expressing B21 haplotype is
even more permissive than the promiscuous binding shown by
the dominantly-expressed class I molecule. B15/B21 heterozygote
cells show much greater expression of B15 class I molecules than
B15/B15 homozygote cells, presumably due to receiving additional
peptides from the B21 TAPs. Thus, chicken MHC haplotypes vary
in several correlated attributes, with the most obvious candidate
linking all these properties being molecular interactions within the
peptide-loading complex (PLC).

ABC transporter | restrictive | permissive | heterozogous advantage |
overdominance

Introduction

Classical class I molecules of the major histocompatibility com-
plex (MHC) play crucial roles in the immune response and other
biological phenomena, presenting peptides to T lymphocytes as
well as being recognized by natural killer (NK) cells (1-3). MHC
class I molecules have high allelic polymorphism and sequence
diversity, with many of the variable positions involved in binding
peptides. The general consensus is that this polymorphism is
driven by a molecular arms race with infectious pathogens (4, 5).

Class I molecules are also polymorphic in expression at the
cell surface, discovered in chickens (6, 7) but more recently found
for HLA-C in humans (8, 9). It has also become clear that the
diversity of peptides bound by particular class I alleles varies
significantly, again described first in chickens (10, 11) and later
in humans (12, 13). More recently, we reported that these two
properties, cell surface expression and peptide repertoire, are
inversely correlated for both chicken class I molecules and four
human HLA-B alleles (14). These properties are also associated
with resistance to certain infectious pathogens: low expressing
promiscuous molecules with resistance to Marek’s disease in

chickens and high expressing fastidious molecules with non-
progression to acquired immunodeficiency syndrome (AIDS) in
humans (12, 14). Based on these findings, we have proposed
that class I alleles vary in peptide repertoires to allow different
strategies in pathogen resistance and vary in expression level for
optimization of the peripheral T cell repertoire (14).

Here, we explore the mechanism that leads to the expression
level polymorphism in chicken class I molecules. In chickens, un-
like mammals, the heterodimeric molecule that pumps peptides
from the cytoplasm to the lumen of the endoplasmic reticulum
(transporter for antigen presentation, TAP) and the dedicated
chaperone that is involved in peptide editing (tapasin or TAP
binding protein, TAPBP) both have high allelic polymorphism,
moderate sequence diversity and consequent functional variation
(15-17). Co-evolution between the TAP and class I genes in
chickens leads to the expression of a single dominantly-expressed
class I (BF2) gene (10, 11, 16, 18), which can have profound effects
on the immune response to infectious pathogens. The data in this
report show that thermostability and the translocation specificity
of the polymorphic TAPs are part of a suite of properties that
overall implicate the peptide loading complex (PLC) in determin-
ing class I expression level.

Results
High expressing haplotypes produce class I molecules with higher
thermal stability than low expressing haplotypes. One explanation

Significance

Major histocompatibility complex (MHC) molecules play crucial
roles in the immune response to pathogens and tumours by
presenting protein fragments (peptides) to T lymphocytes.
Recently, it has become clear that the breadth of peptide
presentation by MHC class I molecules is inversely correlated
with the level of cell surface expression, a relationship that is
correlated with resistance to Marek’s disease in chickens and
with progression to AIDS in humans. In this paper, evidence
is presented that class I molecules vary in a suite of corre-
lated properties including thermostability that are influenced,
at least in part, by the breadth of peptide translocation by
the transporters for antigen presentation (TAPs) which pump
peptides to be loaded.
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Fig. 1. High expressing haplotypes produce more thermostable class I
molecules than low expressing haplotypes. Detergent lysates of chicken
erythrocytes or blood PBLs were incubated at the indicated temperatures,
IPs with the mAb to β2m were analyzed by SDS gel electrophoresis followed
by WB using the mAb to HC, and the amount of HC was quantified by den-
sitometry after fluorography (representative experiment in Fig. S1). Results
from four experiments were normalized and averaged, with SEM indicated
by error bars.

Fig. 2. High and low expressing haplotypes produce the same amount of class
I protein within the cell, but transport different amounts to the cell surface.
Con A-stimulated PBLs from line H.B15 (left) and H.B21b (right) chickens
were labeled with radioactive Met for 30 min, chased for the indicated times,
incubated with mAb to β2m, lysed with detergent and the mAb-bound cell
surface class I molecules precipitated with protein A-beads (outside). The
supernatant of the IP was incubated with mAb to β2m and the mAb-bound
class I molecules precipitated with protein A-beads (inside). All IPs were
analyzed by SDS gel electrophoresis and fluorography (S, standard proteins
at 20, 30, 45, 70 and 95 kDa). The intensity of the HC band at 1.5 h was 64.54
by densitometry (10587 by phosphoimager) for inside and 37.67 (5324) for
outside of B15 cells, 82.08 (16357) for inside and 12.38 (2791) for outside of
B21 cells. Flow cytometric analysis showed mean fluorescence intensity (mfi)
of 775 (F21-2) and 1942 (F21-21) for B15 blasts and 197 (F21-2) and 830 (F21-
21) for B21 blasts.

for the difference in cell surface expression between haplotypes
might be a difference in overall stability of class I molecules from
normal cells, so we examined normal cells with a thermostability
assay (Figs. 1, S1). Aliquots of detergent lysates from erythrocytes
or peripheral blood lymphocytes (PBLs) were incubated at a
range of temperatures, followed by immunopreciptation (IP) with
a monoclonal antibody (mAb) against β2-microglobulin (β2m)
and then western blot (WB) with a mAb to the class I heavy chain
(HC). Dissociation occurred at lower temperatures for class I
molecules from low expressing haplotypes than high expressing
haplotypes, from a mean of less than 40oC for B21 to more than
50oC for B19, although the exact values varied slightly in the five
repeats. It is not clear whether this property reflects the kind of
peptides bound, some intrinsic property of the HC, or both.

High and low expressing haplotypes produce the same amount
of class I protein within the cell, but transport different amounts to

Fig. 3. The B15 class I molecule binds peptides with residues in anchor
positions beyond those found in the peptide motif determined from B15
class I molecules on the surface of cells. HPLC reverse phase chromatography
of peptide libraries based on the B15 peptide KRLIGRKY with 19 amino acids
in position 1 (a, b), 2 (c, d) and 8 (e, f), either without treatment (a, c, e) or
after assembly with and elution from the B15 class I molecule (b, d, f), with
residues in assembled peptides indicated by single letter code.

the cell surface. In fact, the differences in cell surface levels of
chicken class I molecules betweenMHC haplotypes could be due
to differences at many steps in synthesis and turnover. We exam-
ined these steps by pulse/chase experiments, with concanavalin A
(con A)-stimulated PBLs pulsed with radioactiveMet and chased
with excess unlabeled Met, and with IP of fully assembled and
stable class I molecules by the mAb against β2m before analysis
by SDS polyacrylamide gel electrophoresis. Many preliminary
experiments established that roughly the same amount of radioac-
tive Met was incorporated into HC associated with β2m in all
haplotypes (for example, Fig. S2).

In order to distinguish between class I molecules on the inside
of the cell and those on the cell surface, two-stage IPs were carried
out (for example, Fig. 2). First, live intact cells were coated with
themAb on ice, washed thoroughly and lysedwith detergent (with
care taken to exclude dead cells and to mop up free mAb binding
sites upon lysis) before the first IP step, which gave molecules on
the outside of the cell. After clearing any mAb that might have
escaped the first IP step, a second IP with the mAb to β2m was
carried out on the resultant lysate, which gave molecules from the
inside of the cell.
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Fig. 4. B15 TAP transports a very restricted group of peptides, while B21 TAP transports a wider variety of peptides than is bound by the class I molecule
BF2*2101. For the transport assay, permeabilized TG15 (left) and TG21 cells (right) were incubated with radiolabelled synthetic peptides P198 (KRYNASAY)
and p536 (TNPSSKVFYL), respectively, and then lysed with detergent, and the amount of radioactivity bound to con A-beads taken to indicate peptide
translocation followed by glycosylation. The amount of radioactive peptide utilized was set at 50% maximal transport, and non-radioactive synthetic peptides
(at concentrations equivalent to the amount of transport peptide needed for 50% inhibition) were added to assess inhibition (taken to indicate binding and/or
transport), with error bars indicating SEM. Peptides (including duplicate syntheses) based on those eluted from B15 and B21 cells are marked with asterisks.
Assembly assays and cell stabilization experiments (performed 1-5 times each; M. Harrison, A. van Hateren and J. Kaufman, unpublished data) were used to
assess the binding of synthetic peptides. For cell stabilization experiments, significant binding is indicated by green bars, marginal binding by orange bars
and no binding by red bars. For the assembly assays, stable binding is indicated by green bars, unstable binding by orange bars and no binding by red bars.
Unstable binding included broad monomer peaks in the FPLC trace as well as inconsistent results in different experiments; no binding included no peak or a
peak at the position of HC refolded alone. Experiments not done are indicated by open bars.

The results of densitometry in this experiment show that
roughly the same amount of radioactivity was incorporated into
class I molecules containing β2m in both B15 and B21 cells, with
virtually all of the radioactivity still in the inside of the cell at the
start of the chase (t= 0 h). By 1.5 h of chase (themaximum surface
expression for such cells under these conditions, as determined by
preliminary experiments), 35% of the class I molecules were on
the surface of B15 cells, compared to 13% for B21 cells (similar to
phosphoimager analysis, 33% versus 15%, raw data in the legend
to Fig. 2), which compares well with the relative fluorescence of
these same cells by flow cytometry. These analyses showed that
the difference was accounted for by molecules remaining inside

the cell (see legend to Fig. 2). By 4.5 h of chase, the labeled
molecules are nearly undetectable under these conditions. Simi-
lar experiments showed that con A-stimulated PBLs from several
high and low expressing haplotypes synthesize the roughly same
number of class I molecules, but differ in the amount that reaches
the cell surface. The pulse/chase shows that the class I molecules
from all haplotypes examined have no large differences in the rate
of translocation to the surface or the rate of degradation.

Given the results of the thermostability experiment, it was
possible that the same number of class I molecules reached the
surface of cells, but more class I molecules dissociated at the cell
surface of low expressing haplotypes. This seems unlikely given
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Fig. 5. B15 class I molecules from B15/B21 heterozygote animals are ex-
pressed at a higher level than from B15 homozygotes. PBLs from the progeny
of two F1 crosses of B15 and B21 chickens (F, female parent; M, male parent)
were assessed by flow cytometry using the mAb F21-21 to β2m and the mAb
37C.18 to B21 (but not B15) class I molecules. Parents and nine progeny at
nine months of age were analysed, with error bars indicating SEM for each
set of progeny.

that more labeled class I molecules are found inside B21 cells
compared to B15 cells at 1.5 h in the pulse/chase experiment (Fig.
2). To examine this possibility in another way, PBLs of several
MHC haplotypes were incubated overnight with high affinity syn-
thetic peptides (based on those isolated from the surface of cells)
and then cell surface expression was examined by flow cytometry
(Fig. S3), in an assay analogous to the class I stabilization assays
often employed formammalian cells lacking TAP activity (10, 19).
For every haplotype tested, the relative level of class I molecules
increased (∼6% to 48%), but the low expressing haplotype B21
was not rescued to a greater extent (∼32%) than the high ex-
pressing haplotypes. As a third way to examine this point, cells
were incubated overnight at varying temperatures (Fig. S4), like
similar experiments using mammalian cells lacking TAP activity
(20). There are slight differences in class I expression on the
cell surface at different temperatures, but the low expressing B21
haplotype did not increase to the level of the other haplotypes.
These experiments show that there is not obviously an excess of
empty or very unstable class I molecules on the surface of B21
cells, and that transport to the cell surface is the major factor
between high and low expression.

Class I molecules from high expressing haplotypes can bind
a much wider variety of peptides in vitro than are found on the
cell surface. The acquisition of peptides in the PLC is a major
determinant for transport to the cell surface. We have found that
the peptide motif of fastidious class I molecules in cells match
the translocation specificity of the linked TAP alleles (16). Nearly
all single peptides eluted from B15 chicken cells have the same
anchor residues (10), an Arg or Lys at peptide position P1, an
Arg at P2 and a Tyr at Pc (with trace amounts of Phe and Trp
found at Pc by pool sequencing). However, we had found that
some peptides with Gly or Thr at P1, His at P2, and Val or Leu
at Pc led to increases in cell surface class I levels after overnight
incubation with PBLs followed by flow cytometry (Fig. S5).

In order to examine this issue more carefully, three peptide
libraries based on the 8mer KRLIGRKY were synthesized, each
library with one position (P1, P2 or Pc) having 19 amino acids (all
but Cys) at roughly equal proportions. Each library was assembled
with β2m and the BF2*1501 HC, the components were separated
by size exclusion chromatography, and the class I monomer peak

was analyzed by reverse phase HPLC to separate the peptides
(Fig. 3).

The results show that many peptides from each library failed
to assemble with BF2*1501. However, instead of just the basic
amino acids Arg and Lys at P1, peptides with the hydrophobic
amino acids Tyr, Leu, Ile, Val andAla (and/or Thr) also assembled
with class I molecules. Instead of just the basic Arg at P2, both
Arg and Lys were found, and instead of just Tyr (with a little
Phe and Trp) at Pc, Leu and Ile as well as basic Arg, Lys and
His were found. Similar results were found after analysis by
mass spectrometry, with or without incubation at 32oC (Fig. S6).
Moreover, such results were recently reported for BF2*0401, in
which various amino acids at anchor residue positions allowed
assembly of synthetic peptides (21). Thus, it appears that class
I molecules from high expressing haplotypes can bind a wider
variety of peptides than are found on the surface of cells.

TAPs vary enormously in the variety of peptides transported.
Based on the results of TAP transport assays (16) and the data
presented above, it appears that the TAP translocation specificity
can restrict the peptides found on the cell surface of high express-
ing haplotypes. The class I molecules from low expressing haplo-
types can bind an astonishing variety of peptides (11,14), but the
specificity of such TAPs have never been reported. We conducted
translocation inhibition assays with a variety of peptides using
permeabilized B15 and B21 cells, comparing the extent of TAP
transport with class I binding (Fig. 4).

The B15 and B21 peptides used for transport are based on
natural peptides eluted from cells, single amino acid swaps, and
peptides from pathogens predicted based on anchor residues.
Several peptides found at the surface of B15 cells were not
transported well by B15 cells, while peptides were transported
by B21 cells that did not assemble well with the class I molecule
BF2*2101 (Fig. 4). Thus, B15 TAPs are restrictive in that they
limit the peptides presented by the class I molecule on B15 cells,
while B21 TAPs are permissive in that they pump a wider variety
of peptides that more than matches the promiscuous binding of
the dominantly-expressed class I molecules on B21 cells.

B15 class I molecules from B15/B21 heterozygote animals are
expressed at a higher level than from B15 homozygotes. Given that
TAPs restrict the peptides received by high expressing class I
molecules, it seemed possible that class I molecules from one
MHC haplotype might receive additional peptides from the TAP
of another haplotype (16). We examined the expression level of
class I molecules on PBLs from the progeny of matings between
B15 and B21 chickens (one F2 family and two F1 families), all
with similar results (for example, Fig. 5). ThemAb to β2m stained
B21/B21 cells less than B15/B15 cells, while a mAb to B21 class
I molecules stained the B21/B21 cells and not the B15 cells. One
might have expected staining by the mAb to β2m to be interme-
diate in B15/B21 cells, but in fact it was greater than B15/B15
homozygotes. The mAb to B21 molecules stained heterozygote
cells roughly half as much as the B21/B21 homozygote cells.
Overall, it seems likely that the cell surface expression of B15
class I molecules in B15/B21 heterozygotes increases beyond the
levels of B15/B15 homozygotes, although from these experiments
we cannot rule out that the minor B21 molecule BF1*2101 or
another unidentified class I molecule has increased in amount.
These data are similar to results of radioimmunoassays using
alloantisera for B15 and B21 class I molecules reported long ago
(22).

Discussion

We have reported that the cell surface expression of chicken class
I molecules varies inversely with diversity of peptide repertoire
and with resistance toMarek’s disease, and that such correlations
are found for some human class I molecules (6, 10, 11, 14). Here
we make three major points about these findings in chickens:
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that the control of cell surface expression of class I molecules
is determined by some aspect of translocation to the surface,
that TAP specificity controls the peptides bound by and the cell
surface expression of fastidious class I molecules, and that both
peptide translocation of TAPs and thermal stability of class I
molecules are part of this suite of correlated properties.

The level of chicken class I molecules on the surface of
cells appears to be determined by the number of molecules
that move to the surface, and not by transcription, translation,
kinetics of translocation or kinetics of degradation, as assessed by
pulse/chase experiments. Moreover, adding high affinity peptides
and culturing the cells at lower temperatures both suggest that
the cell surface expression is not due to differential degradation
of class I molecules that bear very low affinity (or no) peptides.
These data are consistent with the fact that the dominantly-
expressed class I genes all have nearly identical promoters and
3’UTRs (18), and point to the importance of the PLC, which in
chickens have polymorphic TAPs and tapasin that affect function
(15-17). However, the same phenomena may occur in mam-
mals, which have effectively monomorphic TAPs and tapasin.
The inverse correlation between cell surface expression level and
peptide repertoire is found for at least some HLA-B alleles in
humans (14). Long ago, differences of human class I alleles in
transport to the cell surface were reported (23). Differences in
assembly of HLA-B alleles are reported to be due to polymorphic
HLA-B residues involved in interactionwith tapasin (24), with the
rank order of the four HLA-B alleles matching that reported for
cell surface expression level and peptide repertoire (14).

In chickens, polymorphic class I, TAP and tapasin molecules
are present in the PLC, so the variation in any of these molecules
may contribute to the expression level at the cell surface.We have
previously shown that the structural polymorphism of the TAPs
can lead to functional differences in translocation specificity (16).
Here we report that the TAP from the fastidious B15 haplotype
restricts the peptides available to the class I molecules, with the
fastidious BF2*1501 class I molecule actually able to bind a much
wider variety of peptides than those found on the surface of B15
cells. Similar data were also reported for the B4 haplotype (21).
Such a phenomenon has recently been reported for a mouse
class I molecule (25), with H-2Kb initially binding a wide range
of anchor residues which are then self-edited in a temperature-
dependent step. We find no enormous temperature-dependent
effect with the chicken molecule BF2*1501, consistent with the
restriction of peptides by TAP translocation. However, we also
find that the TAP from the promiscuous B21 haplotype has much
wider translocation specificity, pumping peptides that are not
bound well by the dominantly-expressed BF2*2101 molecule,
indicating that there is a range of specificities of TAP transport
in chickens that correlates with the properties of the dominantly-
expressed class Imolecule. One interesting consequencemight be
that the class Imolecules in chickenMHCheterozygotes could re-
ceive peptides not available in homozygotes. In fact, we find that
the expression level of class I molecules in B15/B21 heterozygotes
is increased compared to B15/B15 homozygotes, similar to a study
buried in the scientific literature (22). As previously suggested
(16, 26), TAP polymorphism may increase the peptides available
in heterozygotes compared to homozygotes, and thus can add
another molecular layer to selection by heterozygote advantage
(overdominance) determined by the chicken MHC.

Our previous work suggested two groups (or a hierarchy be-
tween two extremes) of class I molecules with different strategies
for disease resistance, based on the inverse correlation of expres-
sion level and peptide repertoire (14). Here we show that in chick-
ens there is a suite of correlated properties, including TAP speci-
ficity (as just discussed) and thermal stability of class I molecules.
The promiscuous class I molecules are slightly less stable than the
fastidious molecules, in a rank order like that of the expression

levels, but it is not clear whether this is an intrinsic property of
the class I molecule (how HC folds up, affinity for β2m, etc) or
a property of the peptides bound. It is somewhat surprising that
this difference in stability has no obvious effect on the kinetics of
degradation, an issue that requires further examination. Also, it
is not clear whether this difference in stability will be found for
class I molecules in typical mammals. Examination of the human
class I alleles with different peptide repertoires and/or expression
levels (12-14) is one approach. More dramatic differences might
be found with class I molecules from chimpanzees, which include
two groups (27, 28), one group with fastidious peptide motifs
very much like the fastidious human HLA-B*5701 and B*2705
molecules and another group more like the promiscuous chicken
BF2*0201 and BF2*1401 molecules.

Materials and Methods
Animals and cells. Experimental lines of chickens with known MHC haplo-
types were kept in Basel (Fig. 2, 5, S2-S5), Compton and Cambridge (Fig. 1,
4, S1) as described (10, 18, 29, 30). F2 families based on H.B15 and H.B21b
chickens led to B15/B15, B15/B21 and B21/B21 progeny at the Gipf (Oberfrick)
Farm of the Basel Institute for Immunology (Fig. 5). Previously described are
isolation of erythrocytes and PBL using slow speed spin and Ficoll gradient
centrifugation, culture of blood PBLs in DMEM with 10% foetal bovine serum
(FBS), 1% selected chicken serum, 100 U penicillin, 0.1 mg/ml streptomycin
(Fig. 2, S2, S4) maintained at 37oC or 40oC with 5% CO2 (10, 31). Also
described (10, 18) is culture of ex vivo PBLs either with stimulation by 5 µg/ml
con A (Sigma) for 3 days in culture (Fig. 2, S2, S4), or with and without 1 mM
synthetic peptides in DMEM with 0.5 mg/ml BSA overnight (Fig. 4, S3). The
REV-transformed cell lines TG15 and TG21 (Fig. 4) are described (16).

Antibodies, IP, WB and flow cytometry. The mAb F21-2 directed to all
chicken HC, F21-21 to chicken β2m, and 37C.18 that binds class I molecules
from B21 but not B15 cells have been described (32, 33). Previously described
are general procedures for IP, electrophoresis using Laemmli SDS 12% poly-
acrylamide gels and fluorography (Fig. 2, S2, ref. 34; Fig. S1, ref. 16 but with
modifications noted below), WB procedures by semi-dry blotting (16), and
flow cytometry procedures (Fig. 2, 5, S3-S5; ref. 35).

Thermostability assays (Fig. 1 and S1). Based conceptually on ref. 36,
erythrocytes were lysed on ice at 108/ml in 2% NP40, 150 mM NaCl, 50 mM
TrisCl pH 8, 1 mM MgCl2, 0.1 mM 4-(2-aminoethyl) benzenesulfonyl fluoride
hydrochloride (AEBSF, Pefabloc, Sigma) and cleared of subcellular debris by
centrifugation for 10 min at 13300 rpm at 4oC in Fesco17 centrifuge. Aliquots
of cleared lysate (100 µl for B21, B2 and B14; 25 µl for B12, B15 and B19) were
incubated for 30 min at various temperatures, cooled on ice and spun again
as above. The supernatants were used for IP with F21-21 and protein G-beads
(with washing by 0.1% NP-40, 50 mM TrisCl pH8, 150 mM NaCl), followed by
SDS gel electrophoresis with MagicMark XP Western Standards (Invitrogen)
and WB with F21-2 and HRP-conjugated anti-mouse IgG Fc-specific (Sigma).

Pulse-chase experiment (Fig. 2). Con A-stimulated PBLs (1.5x108 cells
each) were treated with 1.25% α-methyl mannoside for 30 min at 37oC and
washed with warm Met-free medium (Selectamine kit, GIBCO, Grand Island,
NY) with 1.5% FBS (previously dialysed against PBS), 100 U penicillin and
0.1 mg/ml streptomycin, resuspended in the same medium (5 ml) with 2.75
mCi (101.75 MBq) 35S-Met and incubated for 30 min at 37oC to pulse-label.
The chase was begun by addition of 5 ml medium with 0.071 mg/ml non-
radioactive Met, and at each time point, 2.5 ml were removed, with all sub-
sequent steps at 4oC or on ice, with cold buffers. The cells were centrifuged
immediately at 1000 rpm for 6 min in a Heraeus centrifuge, resuspended
in 2 ml PBS with 0.5 mg/ml BSA, 0.1% NaN3 (PBS/BSA/Az), underlayed with
Ficol-paque and centrifuged as above. The interface containing live cells was
collected, washed with 12 ml PBS/BSA/Az buffer as above, resuspended in
0.1 ml PBS/BSA/Az containing 5 µl F21-21 ascites, incubated for 30 min, and
washed three times as above with a change of tubes. The cell pellet was lysed
in 0.5 ml 2% NP-40, 100 mM TrisCl pH 8, 150 mM NaCl, 1 mM MgCl2, 0.1 mM
phenyl methyl sulfonyl fluoride (PMSF) (in which chicken erythrocytes had
previously been lysed, to provide unlabelled class I molecules to block any
free antibody binding sites) for 15 min. The lysate was transferred to a 1.5
ml microfuge tube and centrifuged at 13000 rpm for 5 min in an Eppendorf
centrifuge. The supernatant was transferred to another tube containing 20
µl 50% protein A-beads in PBS/BSA/Az, incubated for 30 min with occasional
inversion, and centrifuged at 1000 rpm for 2 min to give the cell surface class I
molecules (“outside”). To “preclear” the supernatant after the protein A-bead
precipitation (and sop up any antibody that had not been removed), 5 µl
normal rabbit serum was added and incubated for 1 h, before addition of
40 µl 50% protein A-beads and incubation with rotation for 40 min followed
by centrifugation at 13000 rpm for 5 min. The supernatant was transferred
to another tube with 5 µl F21-21 and incubated for 1 h, before addition of
20 µl 50% protein A-beads and incubation with rotation for 40 min followed
by centrifugation at 1500 rpm for 2 min (“inside”). The IP were washed with
NET buffers, boiled in sample buffer with 5% 2-mercaptoethanol, resolved
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by SDS gel electrophoresis and detected by fluorography after soaking the
gel in 0.5 M sodium salicylate as described (10, 34).

Assembly of denatured class I heavy chains and β2M with peptides and
peptide libraries (Fig. 3 and 4). Overall, methods are described, including
bacterial expression and purification of protein chains (11). Small scale
assembly assays were carried out at 4oC with vigorous stirring in 1 ml refold
buffer (100 mM TrisCl pH 8.2, 400 mM arginine, 0.5 mM oxidized glutathione,
5 mM reduced glutathione, 2 mM EDTA, 0.1 mM AEBSF). The peptide, β2m
and heavy chain were added slowly with vigorous stirring in a molar ratio
of 10:2:1 (recently roughly 2.5 µg: 6 µg: 7 µg). After 18-42 h, proteins and
smaller molecules were resolved by FPLC size exclusion chromatography
(AKTA, Pharmacia) using HiLoad 26/60 Superdex 75, Superdex 75 HR 10/30,
Superdex 200 HR 10/30 or Superdex 200 10/300 GL columns (Pharmacia), most
recently with 25 mM TrisCl pH 8, 100 mM NaCl, 0.1% NaN3.

Assembly with B15 peptide libraries was carried out as above, but scaled
to 50 ml refold buffer stirred slowly at 4oC, with first 416 μg peptide library
(xRLIGRKY, P139; KxLIGRKY, P140; KRLIGKRx, P141; made by fMOC chemistry
at the IAH Protein Chemistry Facility) and then 1.33 mg β2m added by
pipette, and then 1.6 mg B15 HC added slowly by dripping at 1 x gravity
through 23g needle. The solution was stirred slowly at 4oC for two days
and then clarified by centrifugation at 4000 rpm for 10 min at 4oC using
a Sorvall RC-3B centrifuge. The supernatant was concentrated to 6 ml by
centrifugation in 15 ml spin concentrators (Ultrafree, Amicon) at 2000 rpm at
4oC using a Sorvall RC3B. The monomers were isolated by FPLC size exclusion
chromatography (AKTA, Pharmacia), using on a Superdex SD75 column
(Amersham) with 100 mM TrisCl pH 8, 150 mM NaCl. The fractions containing
monomers were concentrated to approximately 100 µl using Ultrafree 15 ml
and then Centricon 10 spin concentrators. The peptides were eluted by 0.1%
trifluoroacetic acid (TFA), isolated using the Centricon 10 spin concentrator,
and concentrated by use of a speed-vac. Both the original peptide library
and the eluted peptides were separated by reverse phase HPLC using a C18
Sephasil 5 µm SC 2.1/10 column on a SMART system (Pharmacia Biotech) with
a gradient of 0-40% acetonitrile in 0.1% TFA.

Peptide translocation assays (Fig. 4). TG15 and TG21 cells were per-
meabilized and incubated with iodinated synthetic indicator peptides in
the presence or absence of unlabeled synthetic inhibitor peptides (0.15 µM
for B15 and 0.1 µM for B21, based on 50% inhibition by the appropriate
indicator peptide) for 5 min at 37oC and lysed with detergent essentially as
described (16), but modified for higher through-put. The reaction volume
was halved but with the same number of cells. Following cell lysis and cen-
trifugation, the lysate was incubated at 4oC overnight with con-A Sepharose
(Sigma) in empty size exclusion columns (Epoch Life Science, cat. #2070).
Supernatant containing unbound labelled peptide was removed and the
beads were washed three times with 0.1% Triton X-100, 150 mM NaCl, 50
mM TrisCl pH 8 by gravity flow. The size exclusion columns including beads
were analyzed using a 1470 Wizard gamma counter (Wallac). Preliminary
experiments showed that TG15 cells transported little P258 (KMYNASAY) and
that transport into TG21 cells by p300 (GHAENYSAETL) was more strongly
inhibited by many tested peptides than it was by itself, but P198 (KRYNASAY)
and p536 (TNPSSKVFYL) had high transport rates and were among the
highest inhibitors of transport for TG15 and TG21, respectively.
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