83 research outputs found

    Mechanisms of Improved Exercise Performance under Hyperoxia

    Full text link
    BACKGROUND The impact of hyperoxia on exercise limitation is still incompletely understood. OBJECTIVES We investigated to which extent breathing hyperoxia enhances the exercise performance of healthy subjects and which physiologic mechanisms are involved. METHODS A total of 32 healthy volunteers (43 ± 15 years, 12 women) performed 4 bicycle exercise tests to exhaustion with ramp and constant-load protocols (at 75% of the maximal workload [Wmax] on FiO2 0.21) on separate occasions while breathing ambient (FiO2 0.21) or oxygen-enriched air (FiO2 0.50) in a random, blinded order. Workload, endurance, gas exchange, pulse oximetry (SpO2), and cerebral (CTO) and quadriceps muscle tissue oxygenation (QMTO) were measured. RESULTS During the final 15 s of ramp exercising with FiO2 0.50, Wmax (mean ± SD 270 ± 80 W), SpO2 (99 ± 1%), and CTO (67 ± 9%) were higher and the Borg CR10 Scale dyspnea score was lower (4.8 ± 2.2) than the corresponding values with FiO2 0.21 (Wmax 257 ± 76 W, SpO2 96 ± 3%, CTO 61 ± 9%, and Borg CR10 Scale dyspnea score 5.7 ± 2.6, p < 0.05, all comparisons). In constant-load exercising with FiO2 0.50, endurance was longer than with FiO2 0.21 (16 min 22 s ± 7 min 39 s vs. 10 min 47 s ± 5 min 58 s). With FiO2 0.50, SpO2 (99 ± 0%) and QMTO (69 ± 8%) were higher than the corresponding isotime values to end-exercise with FiO2 0.21 (SpO2 96 ± 4%, QMTO 66 ± 9%), while minute ventilation was lower in hyperoxia (82 ± 18 vs. 93 ± 23 L/min, p < 0.05, all comparisons). CONCLUSION In healthy subjects, hyperoxia increased maximal power output and endurance. It improved arterial, cerebral, and muscle tissue oxygenation, while minute ventilation and dyspnea perception were reduced. The findings suggest that hyperoxia enhanced cycling performance through a more efficient pulmonary gas exchange and a greater availability of oxygen to muscles and the brain (cerebral motor and sensory neurons)

    A prospective cohort study about the effect of repeated living high and working higher on cerebral autoregulation in unacclimatized lowlanders

    Full text link
    Cerebral autoregulation (CA) is impaired during acute high-altitude (HA) exposure, however, effects of temporarily living high and working higher on CA require further investigation. In 18 healthy lowlanders (11 women), we hypothesized that the cerebral autoregulation index (ARI) assessed by the percentage change in middle cerebral artery peak blood velocity (Δ%MCAv)/percentage change in mean arterial blood pressure (Δ%MAP) induced by a sit-to-stand maneuver, is (i) reduced on Day1 at 5050 m compared to 520 m, (ii) is improved after 6 days at 5050 m, and (iii) is less impaired during re-exposure to 5050 m after 7 days at 520 m compared to Cycle1. Participants spent 4-8 h/day at 5050 m and slept at 2900 m similar to real-life working shifts. High/low ARI indicate impaired/intact CA, respectively. With the sit-to-stand at 520 m, mean (95% CI) in ΔMAP and ΔMCAv were − 26% (− 41 to − 10) and − 13% (− 19 to − 7), P < 0.001 both comparisons; mean ± SD in ARI was 0.58 ± 2.44Δ%/Δ%, respectively. On Day1 at 5050 m, ARI worsened compared to 520 m (3.29 ± 2.42Δ%/Δ%), P = 0.006 but improved with acclimatization (1.44 ± 2.43Δ%/Δ%, P = 0.039). ARI was less affected during re-exposure to 5050 m (1.22 ± 2.52Δ%/Δ%, P = 0.027 altitude-induced change between sojourns). This study showed that CA (i) is impaired during acute HA exposure, (ii) improves with living high, working higher and (iii) is ameliorated during re-exposure to HA

    Visuomotor performance at high altitude in COPD patients. Randomized placebo-controlled trial of acetazolamide

    Full text link
    Introduction: We evaluated whether exposure to high altitude impairs visuomotor learning in lowlanders with chronic obstructive pulmonary disease (COPD) and whether this can be prevented by acetazolamide treatment.Methods: 45 patients with COPD, living &lt;800 m, FEV1 ≥40 to &lt;80%predicted, were randomized to acetazolamide (375 mg/d) or placebo, administered 24h before and during a 2-day stay in a clinic at 3100 m. Visuomotor performance was evaluated with a validated, computer-assisted test (Motor-Task-Manager) at 760 m above sea level (baseline, before starting the study drug), within 4h after arrival at 3100 m and in the morning after one night at 3100 m. Main outcome was the directional error (DE) of cursor movements controlled by the participant via mouse on a computer screen during a target tracking task. Effects of high altitude and acetazolamide on DE during an adaptation phase, immediate recall and post-sleep recall were evaluated by regression analyses. www.ClinicalTrials.gov NCT03165890.Results: In 22 patients receiving placebo, DE at 3100 m increased during adaptation by mean 2.5°, 95%CI 2.2° to 2.7° (p &lt; 0.001), during immediate recall by 5.3°, 4.6° to 6.1° (p &lt; 0.001), and post-sleep recall by 5.8°, 5.0 to 6.7° (p &lt; 0.001), vs. corresponding values at 760 m. In 23 participants receiving acetazolamide, corresponding DE were reduced by −0.3° (−0.6° to 0.1°, p = 0.120), −2.7° (−3.7° to −1.6°, p &lt; 0.001) and −3.1° (−4.3° to −2.0°, p &lt; 0.001), compared to placebo at 3100 m.Conclusion: Lowlanders with COPD travelling to 3100 m experienced altitude-induced impairments in immediate and post-sleep recall of a visuomotor task. Preventive acetazolamide treatment mitigated these undesirable effects

    Avaliação do emprego de cartões FTA para o transporte do DNA de Pasteurella multocida e pesquisa de genes associados à virulência em cepas isoladas de cólera aviária nos Estados Unidos

    Get PDF
    Fowl Cholera (FC) is a disease caused by Pasteurella multocida. The severity of this disease is partly caused by virulence factors. Genes encoding fimbriae, capsule, sialidases and proteins for iron metabolism may be related to P. multocida’s ability to infect the host. Besides to examining DNA for the presence of virulence genes, DNA is essential for the diagnostic and FTA cards are an alternative for genetic material transport. The study aims to evaluate the viability of P. multocida DNA transport using the cards and to detect 14 virulence genes in 27 strains isolated from FC cases in the United States by multiplex-PCR. No growth was observed in any of the FTA cards, which was essential to assess the security. Furthermore, DNA detection was possible in 100% of the samples, independent of the storage period (7 to 35 days) and temperature (4°C and 37°C). ptfA, exbd-tonB, hgbA, nanB, oma87, hyaD-hyaC, sodC, hgbB, sodA, nanH and pfhA genes were detected in more than 80% of the samples. FTA cards have proven to be a viable and safe tool for DNA transport of P. multocida. A majority of genes showed a high frequency, which was similar to strains isolated from FC cases.Cólera aviária (CA) é uma doença causada pela bactéria Pasteurella multocida e a severidade dos casos é em parte justificada por fatores de virulência. Genes codificando fímbrias, cápsulas, sialidases, dismutases e proteínas do metabolismo férrico podem ser relacionados à capacidade do agente em infectar o hospedeiro. Além da obtenção do DNA para pesquisa de genes de virulência, o material genético é fundamental para o diagnóstico, e os cartões FTA seriam uma alternativa no transporte de microrganismos. Os objetivos da presente pesquisa foram avaliar a viabilidade do transporte de DNA de P. multocida através dos cartões e detectar 14 genes de virulência em 27 cepas isoladas de CA nos Estados Unidos, por meio de multiplex-PCR. Nenhuma das amostras para análise microbiológica da segurança dos cartões apresentou crescimento. Foi possível a detecção do DNA em 100% das amostras, independentemente do tempo de estocagem (sete a 35 dias) e das temperaturas (4°C e 37°C) avaliadas. Genes ptfA, exbd-tonB, hgbA, nanB, oma87, hyaD-hyaC, sodC, hgbB, sodA, nanH e pfhA foram detectados em mais de 80% das amostras. Os cartões FTA demonstraram ser uma ferramenta viável e segura para o transporte do DNA de P. multocida. A maioria dos genes apresentou uma alta frequência, compatível com isolados de CA

    Effects of Acute Exposure and Acclimatization to High-Altitude on Oxygen Saturation and Related Cardiorespiratory Fitness in Health and Disease

    No full text
    Maximal values of aerobic power (VO2max) and peripheral oxygen saturation (SpO2max) decline in parallel with gain in altitude. Whereas this relationship has been well investigated when acutely exposed to high altitude, potential benefits of acclimatization on SpO2 and related VO2max in healthy and diseased individuals have been much less considered. Therefore, this narrative review was primarily aimed to identify relevant literature reporting altitude-dependent changes in determinants, in particular SpO2, of VO2max and effects of acclimatization in athletes, healthy non-athletes, and patients suffering from cardiovascular, respiratory and/or metabolic diseases. Moreover, focus was set on potential differences with regard to baseline exercise performance, age and sex. Main findings of this review emphasize the close association between individual SpO2 and VO2max, and demonstrate similar altitude effects (acute and during acclimatization) in healthy people and those suffering from cardiovascular and metabolic diseases. However, in patients with ventilatory constrains, i.e., chronic obstructive pulmonary disease, steep decline in SpO2 and V&#775;O2max and reduced potential to acclimatize stress the already low exercise performance. Finally, implications for prevention and therapy are briefly discussed

    Effect of breathing oxygen-enriched air on exercise performance in patients with precapillary pulmonary hypertension: randomized, sham-controlled cross-over trial

    Full text link
    Aims The purpose of the current trial was to test the hypothesis that breathing oxygen-enriched air increases exercise performance of patients with pulmonary arterial or chronic thrombo-embolic pulmonary hypertension (PAH/CTEPH) and to investigate involved mechanisms. Methods and results Twenty-two patients with PAH/CTEPH, eight women, means ± SD 61 ± 14 years, resting mPAP 35 ± 9mmHg, PaO2 ambient air >7.3 kPa, underwent four bicycle ergospirometries to exhaustion on different days, while breathing oxygen-enriched (FiO2 0.50, hyperoxia) or ambient air (FiO2 0.21, normoxia) using progressively increased or constant load protocols (with 75% maximal work rate under FiO2 0.21), according to a randomized, sham-controlled, single-blind, cross-over design. ECG, pulmonary gas-exchange, arterial blood gases, cerebral and quadriceps muscle tissue oxygenation (CTO and QMTO) by near-infrared spectroscopy were measured. In ramp exercise, maximal work rate increased from 113 ± 38 W with normoxia to 132 ± 48 W with hyperoxia, mean difference 19.7 (95% CI 10.5-28.9) W, P < 0.001. Constant load exercise endurance increased from 571 ± 443 to 1242 ± 514 s, mean difference 671 (95% CI 392-951) s, P < 0.001. At end-exercise with hyperoxia PaO2, CTO, QMTO, and PaCO2 were increased, and ventilatory equivalents for CO2 were reduced while the physiological dead space/tidal volume ratio remained unchanged. Conclusion In patients with PAH/CTEPH, breathing oxygen-enriched air provides major increases in exercise performance. This is related to an improved arterial oxygenation that promotes oxygen availability in muscles and brain and to a reduction of the excessive ventilatory response to exercise thereby enhancing ventilatory efficiency. Patients with PAH/CTEPH may therefore benefit from oxygen therapy during daily physical activities and training. Trial registration clinicaltrials.gov Identifier: NCT01748474
    • …
    corecore