124 research outputs found

    Motorcycle active safety systems: Assessment of the function and applicability using a population-based crash data set

    Get PDF
    Objective: Motorcycles and mopeds, often referred to as powered 2-wheelers (PTWs), play an important role in personal mobility worldwide. Despite their advantages, including low cost, space occupancy, and fuel efficiency, the risk of sustaining serious or fatal injuries is higher than that for occupants of passenger cars. The development of safety systems specific for PTWs represents a potential way to reduce casualties among riders. With the proliferation of new active and passive safety technologies, the question as to which might offer the most value is important. In this context, a prioritization process was applied to a set of PTW active safety systems to evaluate their applicability to crash scenarios alone and in combination. The systems included in the study were antilock braking (ABS), autonomous emergency braking (AEB), collision warning, curve warning, and curve assist. Methods: With the functional performance of the 5 safety systems established, the relevance of each system to specific crash configurations and vehicle movements defined by a standardized accident classification system used in Victoria, Australia, was rated by 2 independent reviewers, with a third reviewer acting as a moderator where disagreements occurred. Ratings ranged from 1 (definitely not applicable) to 4 (definitely applicable). Using population-based crash data, the number and percentage of crashes that each safety system could potentially influence, or be relevant for, was defined. Applying accepted injury costs permitted the derivation of the societal economic cost of PTW crashes and the potential reductions associated with each safety system given a theoretical crash avoidance effectiveness of 100%. Results: In the 12-year period 2000–2011, 23,955 PTW riders and 1292 pillion passengers were reported to have been involved in a road crash, with over 500 killed and more than 10,000 seriously injured; only 3.5% of riders/pillion passengers were uninjured. The total economic cost associated with these injured riders and pillion passengers was estimated to be AU11.1billion(US11.1 billion (US7.70 billion; €6.67 billion). The 5 safety systems, as single solutions or in combination, were relevant to 57% of all crashes and to 74% of riders killed. Antilock braking was found to be relevant to the highest number of crashes, with incremental increases in coverage when combined with other safety systems. Conclusions: The findings demonstrate that ABS, alone and in combination with other safety systems, has the potential to mitigate or possibly prevent a high percentage of PTW crashes in the considered setting. Other safety systems can influence different crash scenarios and are also recommended. Given the high cost of motorcycle crashes and the increasing number of PTW safety technologies, the proposed approach can be used to inform the process of selection of the most suitable interventions to improve PTW safety.</p

    Liver and spleen injuries in side impact: differences by side of the road driven

    Get PDF
    More recently, injury from frontal impact has been greatly reduced due to the introduction of safety devices such as airbags and seatbelts. However, injury resulting from side impact still poses a problem. As the human body is asymmetric, the injury pattern and severity will depend on the side of the occupant that is hit by the impacting vehicle. Vehicles in Australia, Hong Kong, Japan and England travel on the left side of the road while vehicles in most other countries travel on the right side of the road. In many vehicles, the driver is the only occupant, hence the side of the road the vehicle is driving on becomes significant. Consequently, the objective of this research was to contrast the injury patterns and severity observed from lateral impact to the different sides of the body. This paper focuses on injury patterns to the liver and spleen. It is expected that drivers in left side travelling vehicles would have a greater chance sustaining injury to the liver while drivers in right-side travelling vehicles would have an increased chance sustaining injury to the spleen

    Thermal and cardiovascular strain imposed by motorcycle protective clothing under Australian summer conditions

    Get PDF
    Motorcycle protective clothing can be uncomfortably hot during summer, and this experiment was designed to evaluate the physiological significance of that burden. Twelve males participated in four, 90-min trials (cycling 30 W) across three environments (25, 30, 35 °C [all 40% relative humidity]). Clothing was modified between full and minimal injury protection. Both ensembles were tested at 25 °C, with only the more protective ensemble investigated at 30 and 35 °C. At 35 °C, auditory canal temperature rose at 0.02 °C min(-1) (SD 0.005), deviating from all other trials (p \u3c 0.05). The thresholds for moderate (\u3e38.5 °C) and profound hyperthermia (\u3e40.0 °C) were predicted to occur within 105 min (SD 20.6) and 180 min (SD 33.0), respectively. Profound hyperthermia might eventuate in ~10 h at 30 °C, but should not occur at 25 °C. These outcomes demonstrate a need to enhance the heat dissipation capabilities of motorcycle clothing designed for summer use in hot climates, but without compromising impact protection. Practitioner\u27s Summary: Motorcycle protective clothing can be uncomfortably hot during summer. This experiment was designed to evaluate the physiological significance of this burden across climatic states. In the heat, moderate (\u3e38.5 °C) and profound hyperthermia (\u3e40.0 °C) were predicted to occur within 105 and 180 min, respectively

    Motorcycle protective clothing: physiological and perceptual barriers to its summer use

    Get PDF
    Despite strong evidence of protective benefits, thermal discomfort is a key disincentive to motorcyclists wearing protective clothing in hot conditions. This paper presents some findings from our studies concerning the thermal management properties of motorcycle protective clothing and their physiological impact in hot conditions. The thermal and vapour permeability and abrasion resistance properties of motorcycle protective clothing were investigated in laboratory tests. The physiological and cognitive impact on humans was investigated using objective and subjective measures under controlled climate conditions and in a real-world riding trial. The aims were to determine: (i) if associations existed between thermal management and the abrasion-resistance properties of a range of commonly available, all-season motorcycle protective suits, (ii) the extent of the thermal load imposed by motorcycle clothing worn in average Australian summer conditions, and (iii) the impact of that thermal burden on psychophysical function. The results demonstrated significant physiological strain for motorcyclists wearing protective clothing in hot conditions. Wide variations in the thermal characteristics and abrasion resistance properties of the suits tested were identified. Ongoing work is investigating the impact that elevated thermal discomfort and physiological thermal strain can have on riding performance and the potential for clothing features, such as ventilation ports to reduce thermal discomfort. These results will determine thresholds for the thermal qualities of motorcycle clothing required for an acceptable compromise between user comfort and injury protection. The outcome will inform industry and consumer information programs about the performance required of motorcycle protective clothing suitable for use in hot conditions

    Evaluation of alternative intersection treatments at rural crossroads using simulation software

    Get PDF
    Objective: Rural roads are characterised by hazardous roadsides and suboptimal geometry, yet allow for high travel speeds and unfavourable impact angles. In Victoria, 25% of persons seriously injured and 52% of fatalities occur on rural roads, with 30% occurring at intersections (Transport Accident Commision, 2016; Victorian Parliament Road Safety Committee 2002). In the USA, almost twice the number of traffic fatalities occur in rural areas than in urban areas, whilst accounting for less than half of all vehicle miles travelled and 21% of the population (NHTSA 2002). The choice of safety countermeasure is therefore paramount. Simulation software provides a cost-effective means of analysing alternative intersection treatments with a view to identifying their effectiveness in mitigating crashes. The aim of this research was to assess the safety benefits of four alternative intersection treatments using in-depth crash data with an advanced crash reconstruction process. Method: Using a single serious injury real-world crash from the MUARC Enhanced Crash Investigation Study (ECIS, Fitzharris et al., 2015) and crash reconstruction software, an exemplar rural crash was reconstructed and validated against real-world data. The crash involved a passenger vehicle (EuroNCAP 5*) approaching from a minor road and failing to yield at a ‘give-way’ sign; the posted speed limit was 80 km/h. The vehicle was struck on the right/driver side by a rigid truck (B-vehicle; 1990) travelling on the major approach (100 km/h). The driver of the case vehicle was seriously injured. Four alternative intersection treatments appropriate for the crash site were constructed in CAD software (Rhinoceros V5): roundabout; rumble strips; a reduced speed limit and the combination of lower speed limit and rumbles to determine the reduction in crash forces in the presence of the countermeasures. Results: The hypothetical scenarios demonstrate substantial reductions in impact force and different points of impact, resulting in a significantly lower injury severity for the struck driver. Speed limit reduction to 80 km/h on the main approach (from 100 km/h) in combination with rumble strips on both intersection approaches had the most favorable outcome with the crash avoided entirely, assuming speed compliance. Discussion: The findings have implications for understanding the role of speed in crashes, and hence the design of effective countermeasures. Simulation software, validated using real-world data, provides a cost effective means of evaluating alternative intersection treatments for rural intersections. Scaled up, implementing these treatments would have significant safety benefits and reduce the road trauma currently associated with rural roads

    Thermal and cardiovascular strain imposed by motorcycle protective clothing under Australian summer conditions

    Get PDF
    Motorcycle protective clothing can be uncomfortably hot during summer, and this experiment was designed to evaluate the physiological significance of that burden. Twelve males participated in four, 90-min trials (cycling 30 W) across three environments (25, 30, 35 °C [all 40% relative humidity]). Clothing was modified between full and minimal injury protection. Both ensembles were tested at 25 °C, with only the more protective ensemble investigated at 30 and 35 °C. At 35 °C, auditory canal temperature rose at 0.02 °C min(-1) (SD 0.005), deviating from all other trials (p \u3c 0.05). The thresholds for moderate (\u3e38.5 °C) and profound hyperthermia (\u3e40.0 °C) were predicted to occur within 105 min (SD 20.6) and 180 min (SD 33.0), respectively. Profound hyperthermia might eventuate in ~10 h at 30 °C, but should not occur at 25 °C. These outcomes demonstrate a need to enhance the heat dissipation capabilities of motorcycle clothing designed for summer use in hot climates, but without compromising impact protection. Practitioner\u27s Summary: Motorcycle protective clothing can be uncomfortably hot during summer. This experiment was designed to evaluate the physiological significance of this burden across climatic states. In the heat, moderate (\u3e38.5 °C) and profound hyperthermia (\u3e40.0 °C) were predicted to occur within 105 and 180 min, respectively

    Aortic injuries in side impacts: a preliminary analysis

    Get PDF
    Injuries to the aorta are among the more serious injuries that result from vehicle impacts, and may often be fatal. This paper examined the incidence of aortic injuries in the US and UK using real-world crash data. The main outcome of interest was the level of risk associated with each principal direction of force for drivers and front seat passengers with respect to sustaining aortic injuries. The results indicate that the risk of sustaining an injury to the aorta is greater for near side crashes than for far side crashes. Further, it is apparent that given a near side crash, the risk of an aortic injury is greater on the left side of the body (and left side of the vehicle) than on the right. It was also found that the delta-V of crashes where occupants sustained an injury to the aorta was considerably higher than crashes where occupants did not sustain aortic injuries. It was speculated that the anatomical asymmetry of the thorax might play a role in the differences seen in injury risk associated with different impact directions. Limitations and further planned research are discussed
    • …
    corecore