3 research outputs found

    Modular Flow-Through Platform for Spectroelectrochemical Analysis

    No full text
    A new type of flow platform for electrochemical and spectroelectrochemical measurements is presented. Finite element method simulations confirm that the hydrodynamic profile within the device is not turbulent and provides an analytical platform for the investigation of homogeneous kinetics, radical lifetimes, and reaction mechanisms. The modular ā€œplug and playā€ configuration of the platform allows one to carry out electrochemistry and spectroscopy individually or simultaneously. Specific demonstrations of electroanalytical measurements using the flow system platform includes voltammetric analysis of organometallic compounds and quantitative analysis of ascorbic acid in commercial orange juice samples. Combined spectroelectrochemical demonstrations include electrochemical luminescence of ruthenium compounds and ligand exchange reactions of iron complexes using UVā€“vis spectroscopy

    Structural Correlations in Heterogeneous Electron Transfer at Monolayer and Multilayer Graphene Electrodes

    No full text
    As a new form of carbon, graphene is attracting intense interest as an electrode material with widespread applications. In the present study, the heterogeneous electron transfer (ET) activity of graphene is investigated using scanning electrochemical cell microscopy (SECCM), which allows electrochemical currents to be mapped at high spatial resolution across a surface for correlation with the corresponding structure and properties of the graphene surface. We establish that the rate of heterogeneous ET at graphene increases systematically with the number of graphene layers, and show that the stacking in multilayers also has a subtle influence on ET kinetics

    Dual-Barrel Conductance Micropipet as a New Approach to the Study of Ionic Crystal Dissolution Kinetics

    No full text
    A new approach to the study of ionic crystal dissolution kinetics is described, based on the use of a dual-barrel theta conductance micropipet. The solution in the pipet is undersaturated with respect to the crystal of interest, and when the meniscus at the end of the micropipet makes contact with a selected region of the crystal surface, dissolution occurs causing the solution composition to change. This is observed, with better than 1 ms time resolution, as a change in the ion conductance current, measured across a potential bias between an electrode in each barrel of the pipet. Key attributes of this new technique are: (i) dissolution can be targeted at a single crystal surface; (ii) multiple measurements can be made quickly and easily by moving the pipet to a new location on the surface; (iii) materials with a wide range of kinetics and solubilities are open to study because the duration of dissolution is controlled by the meniscus contact time; (iv) fast kinetics are readily amenable to study because of the intrinsically high mass transport rates within tapered micropipets; (v) the experimental geometry is well-defined, permitting finite element method modeling to allow quantitative analysis of experimental data. Herein, we study the dissolution of NaCl as an example system, with dissolution induced for just a few milliseconds, and estimate a first-order heterogeneous rate constant of 7.5 (Ā±2.5) Ɨ 10<sup>ā€“5</sup> cm s<sup>ā€“1</sup> (equivalent surface dissolution flux ca. 0.5 Ī¼mol cm<sup>ā€“2</sup> s<sup>ā€“1</sup> into a completely undersaturated solution). Ionic crystals form a huge class of materials whose dissolution properties are of considerable interest, and we thus anticipate that this new localized microscale surface approach will have considerable applicability in the future
    corecore