45 research outputs found

    ASCA Observations of OAO 1657-415 and its Dust-Scattered X-Ray Halo

    Full text link
    We report on two ASCA observations of the high-mass X-ray binary pulsar OAO 1657-415. A short observation near mid-eclipse caught the source in a low-intensity state, with a weak continuum and iron emission dominated by the 6.4-keV fluorescent line. A later, longer observation found the source in a high-intensity state and covered the uneclipsed through mid-eclipse phases. In the high-intensity state, the non-eclipse spectrum has an absorbed continuum component due to scattering by material near the pulsar and 80 per cent of the fluorescent iron emission comes from less than 19 lt-sec away from the pulsar. We find a dust-scattered X-ray halo whose intensity decays through the eclipse. We use this halo to estimate the distance to the source as 7.1 +/- 1.3 kpc.Comment: Accepted for publication in MNRA

    3d absorption-spectra of Sr I through Sr IV

    Get PDF
    The extreme ultraviolet photoabsorption spectra of neutral to three-times-ionized strontium have been recorded in a comprehensive series of experiments with the dual laser-produced plasma technique. Striking differences were found in the spectra, which can be attributed to the transfer of oscillator strength from 3d→np to 3d→nf transitions at Sr2+ due to nf wave-function contraction. In Sr and Sr+, 3d→5p transitions dominate; in Sr2+, 3d→nf transitions are most intense, while in Sr3+ the 4p subshell opens and 3d→4p transitions are the strongest features. Partial cross sections for 3d→ɛf and 3d→ɛp photoionization were calculated and compared with experiment

    Prototype finline-coupled TES bolometers for CLOVER

    Full text link
    CLOVER is an experiment which aims to detect the signature of gravitational waves from inflation by measuring the B-mode polarization of the cosmic microwave background. CLOVER consists of three telescopes operating at 97, 150, and 220 GHz. The 97-GHz telescope has 160 feedhorns in its focal plane while the 150 and 220-GHz telescopes have 256 horns each. The horns are arranged in a hexagonal array and feed a polarimeter which uses finline-coupled TES bolometers as detectors. To detect the two polarizations the 97-GHz telescope has 320 detectors while the 150 and 220-GHz telescopes have 512 detectors each. To achieve the target NEPs (1.5, 2.5, and 4.5x10^-17 W/rtHz) the detectors are cooled to 100 mK for the 97 and 150-GHz polarimeters and 230 mK for the 220-GHz polarimeter. Each detector is fabricated as a single chip to ensure a 100% operational focal plane. The detectors are contained in linear modules made of copper which form split-block waveguides. The detector modules contain 16 or 20 detectors each for compatibility with the hexagonal arrays of horns in the telescopes' focal planes. Each detector module contains a time-division SQUID multiplexer to read out the detectors. Further amplification of the multiplexed signals is provided by SQUID series arrays. The first prototype detectors for CLOVER operate with a bath temperature of 230 mK and are used to validate the detector design as well as the polarimeter technology. We describe the design of the CLOVER detectors, detector blocks, and readout, and present preliminary measurements of the prototype detectors performance.Comment: 4 pages, 6 figures; to appear in the Proceedings of the 17th International Symposium on Space Terahertz Technology, held 10-12 May 2006 in Pari

    A novel, highly efficient cavity backshort design for far-infrared TES detectors

    Get PDF
    In this paper we present a new cavity backshort design for TES (transition edge sensor) detectors which will provide increased coupling of the incoming astronomical signal to the detectors. The increased coupling results from the improved geometry of the cavities, where the geometry is a consequence of the proposed chemical etching manufacturing technique. Using a number of modelling techniques, predicted results of the performance of the cavities for frequencies of 4.3–10 THz are presented and compared to more standard cavity designs. Excellent optical efficiency is demonstrated, with improved response flatness across the band. In order to verify the simulated results, a scaled model cavity was built for testing at the lower W-band frequencies (75–100 GHz) with a VNA system. Further testing of the scale model at THz frequencies was carried out using a globar and bolometer via an FTS measurement set-up. The experimental results are presented, and compared to the simulations. Although there is relatively poor comparison between simulation and measurement at some frequencies, the discrepancies are explained by means of higher-mode excitation in the measured cavity which are not accounted for in the singlemode simulations. To verify this assumption, a better behaved cylindrical cavity is simulated and measured, where excellent agreement is demonstrated in those results. It can be concluded that both the simulations and the supporting measurements give confidence that this novel cavity design will indeed provide much-improved optical coupling for TES detectors in the far-infrared/THz band

    Noise Measurements of a Low-Noise Amplifier in the FDM Readout System for SAFARI

    Get PDF
    The SPICA-SAFARI instrument requires extremely sensitive transition edge sensor (TES) arrays with a noise equivalent power of 2×10-19W/Hz and a readout system with an output noise that is dominated by the detector noise. It is essential to ensure the frequency domain multiplexing (FDM) readout system in SAFARI meets the noise requirement. The FDM system in SAFARI consists essentially of LC filters, a superconducting quantum interference device, a room-temperature low-noise amplifier (LNA), and a demultiplexer. Here we present a noise study of the LNA from a laboratory amplifier chain. We found the equivalent current and voltage noise of the LNA to be 5.4pA/Hz and 315pV/Hz, respectively, which are low enough to read out SAFARI’s TES arrays

    The SAFARI Detector System

    Full text link
    We give an overview of the baseline detector system for SAFARI, the prime focal-plane instrument on board the proposed space infrared observatory, SPICA. SAFARI's detectors are based on superconducting Transition Edge Sensors (TES) to provide the extreme sensitivity (dark NEP2×1019 W/Hz\le2\times10^{-19}\rm\ W/\sqrt Hz) needed to take advantage of SPICA's cold (<8 K) telescope. In order to read out the total of ~3500 detectors we use frequency domain multiplexing (FDM) with baseband feedback. In each multiplexing channel, a two-stage SQUID preamplifier reads out 160 detectors. We describe the detector system and discuss some of the considerations that informed its design.Comment: 7 pages, 3 figures, Proc. SPIE 10708, Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy IX, 107080K (9 July 2018); (fixed typo in abstract

    SAFARI optical system architecture and design concept

    Get PDF
    SpicA FAR infrared Instrument, SAFARI, is one of the instruments planned for the SPICA mission. The SPICA mission is the next great leap forward in space-based far-infrared astronomy and will study the evolution of galaxies, stars and planetary systems. SPICA will utilize a deeply cooled 2.5m-class telescope, provided by European industry, to realize zodiacal background limited performance, and high spatial resolution. The instrument SAFARI is a cryogenic grating-based point source spectrometer working in the wavelength domain 34 to 230 μm, providing spectral resolving power from 300 to at least 2000. The instrument shall provide low and high resolution spectroscopy in four spectral bands. Low Resolution mode is the native instrument mode, while the high Resolution mode is achieved by means of a Martin-Pupplet interferometer. The optical system is all-reflective and consists of three main modules; an input optics module, followed by the Band and Mode Distributing Optics and the grating Modules. The instrument utilizes Nyquist sampled filled linear arrays of very sensitive TES detectors. The work presented in this paper describes the optical design architecture and design concept compatible with the current instrument performance and volume design drivers

    High-sensitivity transition-edge-sensed bolometers: improved speed and characterization with AC and DC bias

    Full text link
    We report on efforts to improve the speed of low-G far-infrared transition-edged-sensed bolometers. We use a fabrication process that does not require any dry etch steps to reduce heat capacity on the suspended device and measure a reduction in the detector time constant. However, we also measure an increase in the temperature-normalized thermal conductance (G), and a corresponding increase in the noise-equivalent power (NEP). We employ a new near-IR photon-noise technique using a near-IR laser to calibrate the frequency-domain multiplexed AC system and compare the results to a well-understood DC circuit. We measure an NEP white noise level of 0.8 aW/rtHz with a 1/f knee below 0.1 Hz and a time constant of 3.2 ms.Comment: 27 pages, 16 figures. This article may be downloaded for personal use only. Any other use requires prior permission of the author and AIP Publishing. This article appeared in J. Appl. Phys. 134 (9) and may be found at https://doi.org/10.1063/5.015720

    Analysis and Optical Characterisation of Bolometric Integrating Cavities Including a Free Space Gap in the Waveguide Structure

    Get PDF
    Bolometric integrating cavities have been used with great success in previous far-infrared space missions, and are planned for extensive use in future missions where ever increasing sensitivity is required. It is critical for the purposes of design and the interpretation of results that these systems are thoroughly understood and optically characterised fully. Such systems, for manufacturing and mechanical reasons, may contain free space gaps between the feed horn antenna and the integrating cavity, and so it is necessary to include the effect of these waveguide openings in simulations. Since these pixels are electrically large, it is more feasible to model them by using the computationally efficient mode-matching approach. In this paper we discuss the elements required to model such pixels within the mode-matching approach and apply it to a typical pixel containing a free space gap, based on an experimental Transition Edge Sensor (TES) cavity waveguide pixel at SRON Groningen

    Analysis of multi-mode waveguide cavities containing free space gaps for use in future far-infrared telescopes

    Get PDF
    In order to investigate the formation and evolution of galaxies, stars and planetary systems, it is necessary to carry out astronomical observations in the far-infrared portion of the electromagnetic spectrum. Missions such as the Herschel Space Observatory (European Space Agency) have already completed observations in this region with great success. Proposed high resolution spectrometer instruments such as SAFARI (a joined European/Japanese (ESA/JAXA) proposal as part of the SPICA mission), aim to build upon the work of previous missions by carrying out observations in the 1.5–10 THz band with unprecedented levels of sensitivity. Spica (SPace Infrared telescope for Cosmology and Astrophysics) is currently a candidate mission as part of ESA’s Cosmic Vision 2015–2025. Future far-IR missions must realise higher levels of sensitivity, limited only by the cosmic microwave background. One solution in achieving these sensitivity goals is to use waveguide coupled Transition Edge Sensor (TES) detectors, arranged in a densely packed focal plane. Additionally, multi-mode pixels can be used in order to maximise the optical throughput and coupling while still defining a definite beam shape. For the SAFARI instrument multimoded horns coupling into integrating waveguide cavities that house the TES detectors and associated absorbing layer are envisioned. This represents a significant technological challenge in terms of accurate manufacture tolerances relative to the short wavelength, however in the case of the SAFARI instrument pixel much work has already been carried out, with prototype pixels having undergone extensive testing at SRON (Space Research Organisation of the Netherlands) Groningen. In order to fully characterise the experimental results, it is necessary also to carry out comprehensive electromagnetic modelling of these structures which is also computationally intensive and requires novel approaches. These waveguide structures (horn and cavity) are typically electrically large however, and so analysis techniques using commercial finite element software prove inefficient (particularly as the structures are multimoded). The mode-matching technique with new analytical features offer a computationally efficient and reliable alternative to full electromagnetic solvers, and in this paper we outline the additions to this technique that were necessary in order to allow typical SAFARI far-infrared pixels to be modeled, including the complete optical coupling calculation of the measurement test setup at SRON and the inclusion of the free space gap within the horn antenna and the integrating cavity. Optical coupling efficiencies simulated using this developed technique show excellent agreement with the experimental measurements
    corecore