3 research outputs found

    Discovery and in Vivo Evaluation of Potent Dual CYP11B2 (Aldosterone Synthase) and CYP11B1 Inhibitors

    No full text
    Aldosterone is a key signaling component of the renin-angiotensin-aldosterone system and as such has been shown to contribute to cardiovascular pathology such as hypertension and heart failure. Aldosterone synthase (CYP11B2) is responsible for the final three steps of aldosterone synthesis and thus is a viable therapeutic target. A series of imidazole derived inhibitors, including clinical candidate <b>7n</b>, have been identified through design and structure–activity relationship studies both in vitro and in vivo. Compound <b>7n</b> was also found to be a potent inhibitor of 11β-hydroxylase (CYP11B1), which is responsible for cortisol production. Inhibition of CYP11B1 is being evaluated in the clinic for potential treatment of hypercortisol diseases such as Cushing’s syndrome

    The Discovery of (<i>S</i>)‑1-(6-(3-((4-(1-(Cyclopropanecarbonyl)piperidin-4-yl)-2-methylphenyl)amino)-2,3-dihydro‑1<i>H</i>‑inden-4-yl)pyridin-2-yl)-5-methyl‑1<i>H</i>‑pyrazole-4-carboxylic Acid, a Soluble Guanylate Cyclase Activator Specifically Designed for Topical Ocular Delivery as a Therapy for Glaucoma

    No full text
    Soluble guanylate cyclase (sGC), the endogenous receptor for nitric oxide (NO), has been implicated in several diseases associated with oxidative stress. In a pathological oxidative environment, the heme group of sGC can be oxidized becoming unresponsive to NO leading to a loss in the ability to catalyze the production of cGMP. Recently a dysfunctional sGC/NO/cGMP pathway has been implicated in contributing to elevated intraocular pressure associated with glaucoma. Herein we describe the discovery of molecules specifically designed for topical ocular administration, which can activate oxidized sGC restoring the ability to catalyze the production of cGMP. These efforts culminated in the identification of compound <b>(+)-23</b>, which robustly lowers intraocular pressure in a cynomolgus model of elevated intraocular pressure over 24 h after a single topical ocular drop and has been selected for clinical evaluation

    Potent Nonimmunosuppressive Cyclophilin Inhibitors With Improved Pharmaceutical Properties and Decreased Transporter Inhibition

    No full text
    Nonimmunosuppressive cyclophilin inhibitors have demonstrated efficacy for the treatment of hepatitis C infection (HCV). However, alisporivir, cyclosporin A, and most other cyclosporins are potent inhibitors of OATP1B1, MRP2, MDR1, and other important drug transporters. Reduction of the side chain hydrophobicity of the P4 residue preserves cyclophilin binding and antiviral potency while decreasing transporter inhibition. Representative inhibitor <b>33</b> (NIM258) is a less potent transporter inhibitor relative to previously described cyclosporins, retains anti-HCV activity in cell culture, and has an acceptable pharmacokinetic profile in rats and dogs. An X-ray structure of <b>33</b> bound to rat cyclophilin D is reported
    corecore