6 research outputs found

    Enhancing glucose flux into sweat by increasing paracellular permeability of the sweat gland

    No full text
    <div><p>Non-invasive wearable biosensors provide real-time, continuous, and actionable health information. However, difficulties detecting diluted biomarkers in excreted biofluids limit practical applications. Most biomarkers of interest are transported paracellularly into excreted biofluids from biomarker-rich blood and interstitial fluid during normal modulation of cellular tight junctions. Calcium chelators are reversible tight junction modulators that have been shown to increase absorption across the intestinal epithelium. However, calcium chelators have not yet been shown to improve the extraction of biomarkers. Here we show that for glucose, a paracellularly transported biomarker, the flux into sweat can be increased by >10x using citrate, a calcium chelator, in combination with electroosmosis. Our results demonstrate a method of increasing glucose flux through the sweat gland epithelium, thereby increasing the concentration in sweat. Future work should examine if this method enhances flux for other paracellularly transported biomarkers to make it possible to detect more biomarkers with currently available biosensors.</p></div

    Glucose flux under electroosmotic flow and paracellular permeability enhancement with electroosmotic flow.

    No full text
    <p>Total glucose flux measured before, during, and after treatments: iontophoresis of either acetate (black) which should induce only electroosmosis, or citrate (blue) which should induce both paracellular permeability enhancement and electroosmosis (<i>n</i> = 4).</p

    Glucose flux under normal conditions.

    No full text
    <p>Sweat glucose concentration and sweat rates measured at various time points following artificial sweat stimulation. Sweat glucose concentration is inversely proportional to sweat rate. The average glucose flux for all participants is roughly 100 fmol/(min-gland) (<i>n</i> = 6).</p

    Oxide-Free Actuation of Gallium Liquid Metal Alloys Enabled by Novel Acidified Siloxane Oils

    No full text
    Electrowetting and electrocapillarity of liquid metals have a long history, and a recent explosion of renewed interest. Liquid metals have electromagnetic properties and surface tensions (>500 mN/m) that enable new forms of reconfigurable devices. However, the only nontoxic option, gallium alloys, suffer from immediate formation of a semirigid surface oxide. Although acids or electrochemical reduction can remove this oxide, these approaches surround the gallium alloy in a fluid that is also electrically conducting, diminishing electromagnetic effectiveness and precluding electrowetting actuation. Reported here are acidified siloxanes that remove and prevent oxide formation. Importantly, the siloxane oil associatively incorporates hydrochloric or hydrobromic acids, is electrically insulating, is chemically stable, removes etching byproducts (including water), and allows robust electrowetting. This work opens up new opportunities for liquid metal reconfiguration, and is of fundamental interest due to the unexpected chemical stability of the acidified siloxanes and their application to other materials and surfaces

    Chemically Enhanced Polymer-Coated Carbon Nanotube Electronic Gas Sensor for Isopropyl Alcohol Detection

    No full text
    Breathing-air quality within commercial airline cabins has come under increased scrutiny because of the identification of volatile organic compounds (VOCs) from the engine bleed air used to provide oxygen to cabins. Ideally, a sensor would be placed within the bleed air pipe itself, enabling detection before it permeated through and contaminated the entire cabin. Current gas-phase sensors suffer from issues with selectivity, do not have the appropriate form factor, or are too complex for commercial deployment. Here, we chose isopropyl alcohol (IPA), a main component of de-icer spray used in the aerospace community, as a target analyte: IPA exposure has been hypothesized to be a key component of aerotoxic syndrome in pre, during, and postflight. IPAs proposed mechanism of action is that of an anesthetic and central nervous system depressant. In this work, we describe IPA sensor development by showing (1) the integration of a polymer as an IPA capture matrix, (2) the adoption of a redox chemical additives as an IPA oxidizer, and (3) the application of carbon nanotubes as an electronic sensing conduit. We demonstrate the ability to not only detect IPA at 100–10 000 ppm in unfiltered, laboratory air but also discriminate among IPA, isoprene, and acetone, especially in comparison to a typical photoionization detector. Overall, we show an electronic device that operates at room temperature and responds preferentially to IPA, where the increase in the resistance corresponds directly to the concentration of IPA. Ultimately, this study opens up the pathway to selective electronic sensors that can enable real-time monitoring in a variety of environments for the force health prevention and protection, and the potential through future work to enable low parts-per-million and possibly high parts-per-billion selective detection of gas-phase VOCs of interest

    Advancing Peptide-Based Biorecognition Elements for Biosensors Using <i>in-Silico</i> Evolution

    No full text
    Sensors for human health and performance monitoring require biological recognition elements (BREs) at device interfaces for the detection of key molecular biomarkers that are measurable biological state indicators. BREs, including peptides, antibodies, and nucleic acids, bind to biomarkers in the vicinity of the sensor surface to create a signal proportional to the biomarker concentration. The discovery of BREs with the required sensitivity and selectivity to bind biomarkers at low concentrations remains a fundamental challenge. In this study, we describe an <i>in-silico</i> approach to evolve higher sensitivity peptide-based BREs for the detection of cardiac event marker protein troponin I (cTnI) from a previously identified BRE as the parental affinity peptide. The P2 affinity peptide, evolved using our <i>in-silico</i> method, was found to have ∼16-fold higher affinity compared to the parent BRE and ∼10 fM (0.23 pg/mL) limit of detection. The approach described here can be applied towards designing BREs for other biomarkers for human health monitoring
    corecore