3,840 research outputs found

    Correlation-Strength Driven Anderson Metal-Insulator Transition

    Get PDF
    The possibility of driving an Anderson metal-insulator transition in the presence of scale-free disorder by changing the correlation exponent is numerically investigated. We calculate the localization length for quasi-one-dimensional systems at fixed energy and fixed disorder strength using a standard transfer matrix method. From a finite-size scaling analysis we extract the critical correlation exponent and the critical exponent characterizing the phase transition.Comment: 3 pages; 2 figure

    Novel Bayesian Networks for Genomic Prediction of Developmental Traits in Biomass Sorghum.

    Get PDF
    The ability to connect genetic information between traits over time allow Bayesian networks to offer a powerful probabilistic framework to construct genomic prediction models. In this study, we phenotyped a diversity panel of 869 biomass sorghum (Sorghum bicolor (L.) Moench) lines, which had been genotyped with 100,435 SNP markers, for plant height (PH) with biweekly measurements from 30 to 120 days after planting (DAP) and for end-of-season dry biomass yield (DBY) in four environments. We evaluated five genomic prediction models: Bayesian network (BN), Pleiotropic Bayesian network (PBN), Dynamic Bayesian network (DBN), multi-trait GBLUP (MTr-GBLUP), and multi-time GBLUP (MTi-GBLUP) models. In fivefold cross-validation, prediction accuracies ranged from 0.46 (PBN) to 0.49 (MTr-GBLUP) for DBY and from 0.47 (DBN, DAP120) to 0.75 (MTi-GBLUP, DAP60) for PH. Forward-chaining cross-validation further improved prediction accuracies of the DBN, MTi-GBLUP and MTr-GBLUP models for PH (training slice: 30-45 DAP) by 36.4-52.4% relative to the BN and PBN models. Coincidence indices (target: biomass, secondary: PH) and a coincidence index based on lines (PH time series) showed that the ranking of lines by PH changed minimally after 45 DAP. These results suggest a two-level indirect selection method for PH at harvest (first-level target trait) and DBY (second-level target trait) could be conducted earlier in the season based on ranking of lines by PH at 45 DAP (secondary trait). With the advance of high-throughput phenotyping technologies, our proposed two-level indirect selection framework could be valuable for enhancing genetic gain per unit of time when selecting on developmental traits

    Overcoming the liability of poorness: disadvantage, fragility, and the poverty entrepreneur

    Get PDF
    All entrepreneurs must overcome the liabilities of newness and smallness as they attempt to launch and grow a new venture. However, those in poverty face an even greater challenge due to a concept we introduce, known as the liability of poorness, which centers on literacy gaps, a scarcity mindset, intense non-business pressures, and the lack of a safety net. Each of these components of the liability of poorness contributes to the disadvantage and fragility of the enterprises confronting the poor. Implications of this fragility for venture dynamics as well as how some poverty entrepreneurs overcome this liability are explored. Research priorities are discussed for ongoing work on the liability of poorness

    Effect of Applied Magnetic Field on Surface Morphology, Optical and Electrical Property of Tin (IV) Oxide (SnO2) Nanomaterial for Meat Spoilage Detection

    Get PDF
    The specter of botcha or “double dead” meat is a persistent, if not underestimated, threat in Filipino markets. In 2014, the National Meat Inspection Service (NMIS) recorded the confiscation of more than 12 metric tons of so-called hot meat, unfit for human consumption. The hazard that consuming this and other forms of spoiled meat poses to human health cannot be overstated, especially because spoiled meat can harbor dangerous pathogens or parasites such as Salmonella, Staphylococcus, Pseudomonas Aeroginosa, and Trichinella

    Multi-component Decomposition of Cosmic Infrared Background Fluctuations

    Get PDF
    The near-infrared background between 0.5 and 2 μm contains a wealth of information related to radiative processes in the universe. Infrared background anisotropies encode the redshift-weighted total emission over cosmic history, including any spatially diffuse and extended contributions. The anisotropy power spectrum is dominated by undetected galaxies at small angular scales and a diffuse background of Galactic emission at large angular scales. In addition to these known sources, the infrared background also arises from intrahalo light (IHL) at z < 3 associated with tidally stripped stars during galaxy mergers. Moreover, it contains information on the very first galaxies from the epoch of reionization (EoR). The EoR signal has a spectral energy distribution (SED) that goes to zero near optical wavelengths due to Lyman absorption, while other signals have spectra that vary smoothly with frequency. Due to differences in SEDs and spatial clustering, these components may be separated in a multi-wavelength-fluctuation experiment. To study the extent to which EoR fluctuations can be separated in the presence of IHL, and extragalactic and Galactic foregrounds, we develop a maximum likelihood technique that incorporates a full covariance matrix among all the frequencies at different angular scales. We apply this technique to simulated deep imaging data over a 2 × 45 deg^2 sky area from 0.75 to 5 μm in 9 bands and find that such a "frequency tomography" can successfully reconstruct both the amplitude and spectral shape for representative EoR, IHL, and the foreground signals

    Extreme diving behaviour in devil rays links surface waters and the deep ocean

    Get PDF
    © The Author(s), 2014. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Nature Communications 5 (2014): 4274, doi:10.1038/ncomms5274.Ecological connections between surface waters and the deep ocean remain poorly studied despite the high biomass of fishes and squids residing at depths beyond the euphotic zone. These animals likely support pelagic food webs containing a suite of predators that include commercially important fishes and marine mammals. Here we deploy pop-up satellite archival transmitting tags on 15 Chilean devil rays (Mobula tarapacana) in the central North Atlantic Ocean, which provide movement patterns of individuals for up to 9 months. Devil rays were considered surface dwellers but our data reveal individuals descending at speeds up to 6.0 m s−1 to depths of almost 2,000 m and water temperatures <4 °C. The shape of the dive profiles suggests that the rays are foraging at these depths in deep scattering layers. Our results provide evidence of an important link between predators in the surface ocean and forage species occupying pelagic habitats below the euphotic zone in ocean ecosystems.This research was partially supported by the Portuguese Foundation for Science and Technology/Ministry of Education and Science (FCT/MCTES-MEC) through individual support to P.A. (Cieˆncia 2008/POPH/QREN) and J.F. (SFRH/BPD/66532/2009) and the LARSyS Strategic Project (PEst/OE/EEI/LA00009/2011). This study was support by the US National Science Foundation (OCE 0825148 to S.R.T. and G.B.S.), The Harrison Foundation, Rodney and Elizabeth Berens, the King Abdullah University of Science and Technology (baseline research funds to M.L.B.) and the Woods Hole Oceanographic Institution

    Intensity Mapping of Hα, Hβ, [OII], and [OIII] Lines at z &lt; 5

    Get PDF
    Intensity mapping is now becoming a useful tool to study the large-scale structure of the universe through spatial variations in the integrated emission from galaxies and the intergalactic medium. We study intensity mapping of the H-alpha 6563AA, [OIII]5007AA, [OII]3727AA and H-beta 4861AA lines at 0.8<z<5.2. The mean intensities of these four emission lines are estimated using the observed luminosity functions (LFs), cosmological simulations, and the star formation rate density (SFRD) derived from observations at z<5. We calculate the intensity power spectra and consider the foreground contamination of other lines at lower redshifts. We use the proposed NASA small explorer SPHEREx (the Spectro-Photometer for the History of the Universe, Epoch of Reionization, and Ices Explorer) as a case study for the detectability of the intensity power spectra of the four emission lines. We also investigate the cross correlation with the 21-cm line probed by CHIME (the Canadian Hydrogen Intensity Mapping Experiment), Tianlai experiment and SKA (the Square Kilometer Array) at 0.8<z<2.4. We find both the auto and cross power spectra can be well measured for the H-alpha, [OIII] and [OII] lines at z<3, while it is more challenging for the H-beta line. Finally, we estimate the constraint on the SFRD from intensity mapping, and find we can reach accuracy higher than 7% at z<4, which is better than usual measurements using the LFs of galaxies.Comment: 14 pages, 9 figures, 4 tables. Accepted for publication in Ap
    corecore