75 research outputs found

    Mental health problems in children with intellectual disability

    Get PDF
    Intellectual disability ranks in the top ten causes of disease burden globally and is the top cause in children younger than 5 years. 2-3% of children have an intellectual disability, and about 15% of children present with differences consistent with an intellectual disability (ie, global developmental delay and borderline intellectual functioning). In this Review, we discuss the prevalence of mental health problems, interventions to address these, and issues of access to treatment and services. Where possible, we take a global perspective, given most children with intellectual disability live in low-income and middle-income countries. Approximately 40% of children with intellectual disability present with a diagnosable mental disorder, a rate that is at least double that in children without intellectual disability. Most risk factors for poor mental health and barriers to accessing support are not unique to people with intellectual disability. With proportionate universalism as the guiding principle for reducing poor mental health at scale, we discuss four directions for addressing the mental health inequity in intellectual disability

    Prevalence and Predictors of Vitamin D Insufficiency in Children: A Great Britain Population Based Study

    Get PDF
    Objectives To evaluate the prevalence and predictors of vitamin D insufficiency (VDI) in children In Great Britain. Design A nationally representative cross-sectional study survey of children (1102) aged 4–18 years (999 white, 570 male) living in private households (January 1997–1998). Interventions provided information about dietary habits, physical activity, socio-demographics, and blood sample. Outcome measures were vitamin D insufficiency (<50 nmol/L). Results Vitamin D levels (mean = 62.1 nmol/L, 95%CI 60.4–63.7) were insufficient in 35%, and decreased with age in both sexes (p<0.001). Young People living between 53–59 degrees latitude had lower levels (compared with 50–53 degrees, p = 0.045). Dietary intake and gender had no effect on vitamin D status. A logistic regression model showed increased risk of VDI in the following: adolescents (14–18 years old), odds ratio (OR) = 3.6 (95%CI 1.8–7.2) compared with younger children (4–8 years); non white children (OR = 37 [95%CI 15–90]); blood levels taken December-May (OR = 6.5 [95%CI 4.3–10.1]); on income support (OR = 2.2 [95%CI 1.3–3.9]); not taking vitamin D supplementation (OR = 3.7 [95%CI 1.4–9.8]); being overweight (OR 1.6 [95%CI 1.0–2.5]); <1/2 hour outdoor exercise/day/week (OR = 1.5 [95%CI 1.0–2.3]); watched >2.5 hours of TV/day/week (OR = 1.6[95%CI 1.0–2.4]). Conclusion We confirm a previously under-recognised risk of VDI in adolescents. The marked higher risk for VDI in non-white children suggests they should be targeted in any preventative strategies. The association of higher risk of VDI among children who exercised less outdoors, watched more TV and were overweight highlights potentially modifiable risk factors. Clearer guidelines and an increased awareness especially in adolescents are needed, as there are no recommendations for vitamin D supplementation in older children

    Intravenous immunoglobulin treatment in childhood encephalitis (IgNiTE): a randomised controlled trial

    Get PDF
    Objective: To investigate whether intravenous immunoglobulin (IVIG) improves neurological outcomes in children with encephalitis when administered early in the illness. // Design: Phase 3b multicentre, double-blind, randomised placebo-controlled trial. // Setting: Twenty-one hospitals in the UK. // Participants: Children aged 6 months to 16 years with a diagnosis of acute or subacute encephalitis, with a planned sample size of 308. // Intervention: Two doses (1 g/kg/dose) of either IVIG or matching placebo given 24–36 hours apart, in addition to standard treatment. // Main outcome measure: The primary outcome was a ‘good recovery’ at 12 months after randomisation, defined as a score of≤2 on the Paediatric Glasgow Outcome Score Extended. // Secondary outcome measures: The secondary outcomes were clinical, neurological, neuroimaging and neuropsychological results, identification of the proportion of children with immune-mediated encephalitis, and IVIG safety data. // Results: 18 participants were recruited from 12 hospitals and randomised to receive either IVIG (n=10) or placebo (n=8) between 23 December 2015 and 26 September 2017. The study was terminated early following withdrawal of funding due to slower than anticipated recruitment, and therefore did not reach the predetermined sample size required to achieve the primary study objective; thus, the results are descriptive. At 12 months after randomisation, 9 of the 18 participants (IVIG n=5/10 (50%), placebo n=4/8 (50%)) made a good recovery and 5 participants (IVIG n=3/10 (30%), placebo n=2/8 (25%)) made a poor recovery. Three participants (IVIG n=1/10 (10%), placebo n=2/8 (25%)) had a new diagnosis of epilepsy during the study period. Two participants were found to have specific autoantibodies associated with autoimmune encephalitis. No serious adverse events were reported in participants receiving IVIG. // Conclusions: The IgNiTE (ImmunoglobuliN in the Treatment of Encephalitis) study findings support existing evidence of poor neurological outcomes in children with encephalitis. However, the study was halted prematurely and was therefore underpowered to evaluate the effect of early IVIG treatment compared with placebo in childhood encephalitis. // Trial registration number: Clinical Trials.gov NCT02308982; ICRCTN registry ISRCTN15791925

    Vitamin D and antimicrobial peptide levels in patients with atopic dermatitis and atopic dermatitis complicated by eczema herpeticum: A pilot study.

    Get PDF
    In this study, Vitamin D supplementation results in improved clinical severity of atopic dermatitis and increased skin surface LL-37 levels, analyzed by a novel, non-invasive method. Vitamin D supplementation could be a therapeutic option in AD

    Phenotypic and genetic spectrum of epilepsy with myoclonic atonic seizures

    Get PDF
    Objective: We aimed to describe the extent of neurodevelopmental impairments andidentify the genetic etiologies in a large cohort of patients with epilepsy with myoclonicatonic seizures (MAE).Methods: We deeply phenotyped MAE patients for epilepsy features, intellectualdisability, autism spectrum disorder, and attention-deficit/hyperactivity disorderusing standardized neuropsychological instruments. We performed exome analysis(whole exome sequencing) filtered on epilepsy and neuropsychiatric gene sets toidentify genetic etiologies.Results: We analyzed 101 patients with MAE (70% male). The median age of seizureonset was 34 months (range = 6-72 months). The main seizure types were myoclonicatonic or atonic in 100%, generalized tonic-clonic in 72%, myoclonic in 69%, absencein 60%, and tonic seizures in 19% of patients. We observed intellectual disability in62% of patients, with extremely low adaptive behavioral scores in 69%. In addition,24% exhibited symptoms of autism and 37% exhibited attention-deficit/hyperactivitysymptoms. We discovered pathogenic variants in 12 (14%) of 85 patients, includingfive previously published patients. These were pathogenic genetic variants inSYNGAP1 (n = 3), KIAA2022 (n = 2), and SLC6A1 (n = 2), as well as KCNA2,SCN2A, STX1B, KCNB1, and MECP2 (n = 1 each). We also identified three newcandidate genes, ASH1L, CHD4, and SMARCA2 in one patient each.Significance: MAE is associated with significant neurodevelopmental impairment.MAE is genetically heterogeneous, and we identified a pathogenic genetic etiologyin 14% of this cohort by exome analysis. These findings suggest that MAE is a manifestationof several etiologies rather than a discrete syndromic entity

    Illness duration and symptom profile in symptomatic UK school-aged children tested for SARS-CoV-2.

    Get PDF
    BACKGROUND: In children, SARS-CoV-2 infection is usually asymptomatic or causes a mild illness of short duration. Persistent illness has been reported; however, its prevalence and characteristics are unclear. We aimed to determine illness duration and characteristics in symptomatic UK school-aged children tested for SARS-CoV-2 using data from the COVID Symptom Study, one of the largest UK citizen participatory epidemiological studies to date. METHODS: In this prospective cohort study, data from UK school-aged children (age 5-17 years) were reported by an adult proxy. Participants were voluntary, and used a mobile application (app) launched jointly by Zoe Limited and King's College London. Illness duration and symptom prevalence, duration, and burden were analysed for children testing positive for SARS-CoV-2 for whom illness duration could be determined, and were assessed overall and for younger (age 5-11 years) and older (age 12-17 years) groups. Children with longer than 1 week between symptomatic reports on the app were excluded from analysis. Data from symptomatic children testing negative for SARS-CoV-2, matched 1:1 for age, gender, and week of testing, were also assessed. FINDINGS: 258 790 children aged 5-17 years were reported by an adult proxy between March 24, 2020, and Feb 22, 2021, of whom 75 529 had valid test results for SARS-CoV-2. 1734 children (588 younger and 1146 older children) had a positive SARS-CoV-2 test result and calculable illness duration within the study timeframe (illness onset between Sept 1, 2020, and Jan 24, 2021). The most common symptoms were headache (1079 [62·2%] of 1734 children), and fatigue (954 [55·0%] of 1734 children). Median illness duration was 6 days (IQR 3-11) versus 3 days (2-7) in children testing negative, and was positively associated with age (Spearman's rank-order rs 0·19, p<0·0001). Median illness duration was longer for older children (7 days, IQR 3-12) than younger children (5 days, 2-9). 77 (4·4%) of 1734 children had illness duration of at least 28 days, more commonly in older than younger children (59 [5·1%] of 1146 older children vs 18 [3·1%] of 588 younger children; p=0·046). The commonest symptoms experienced by these children during the first 4 weeks of illness were fatigue (65 [84·4%] of 77), headache (60 [77·9%] of 77), and anosmia (60 [77·9%] of 77); however, after day 28 the symptom burden was low (median 2 symptoms, IQR 1-4) compared with the first week of illness (median 6 symptoms, 4-8). Only 25 (1·8%) of 1379 children experienced symptoms for at least 56 days. Few children (15 children, 0·9%) in the negatively tested cohort had symptoms for at least 28 days; however, these children experienced greater symptom burden throughout their illness (9 symptoms, IQR 7·7-11·0 vs 8, 6-9) and after day 28 (5 symptoms, IQR 1·5-6·5 vs 2, 1-4) than did children who tested positive for SARS-CoV-2. INTERPRETATION: Although COVID-19 in children is usually of short duration with low symptom burden, some children with COVID-19 experience prolonged illness duration. Reassuringly, symptom burden in these children did not increase with time, and most recovered by day 56. Some children who tested negative for SARS-CoV-2 also had persistent and burdensome illness. A holistic approach for all children with persistent illness during the pandemic is appropriate. FUNDING: Zoe Limited, UK Government Department of Health and Social Care, Wellcome Trust, UK Engineering and Physical Sciences Research Council, UK Research and Innovation London Medical Imaging and Artificial Intelligence Centre for Value Based Healthcare, UK National Institute for Health Research, UK Medical Research Council, British Heart Foundation, and Alzheimer's Society

    Illness Characteristics of COVID-19 in Children Infected with the SARS-CoV-2 Delta Variant.

    Get PDF
    BACKGROUND: The Delta (B.1.617.2) SARS-CoV-2 variant was the predominant UK circulating strain between May and November 2021. We investigated whether COVID-19 from Delta infection differed from infection with previous variants in children. METHODS: Through the prospective COVID Symptom Study, 109,626 UK school-aged children were proxy-reported between 28 December 2020 and 8 July 2021. We selected all symptomatic children who tested positive for SARS-CoV-2 and were proxy-reported at least weekly, within two timeframes: 28 December 2020 to 6 May 2021 (Alpha (B.1.1.7), the main UK circulating variant) and 26 May to 8 July 2021 (Delta, the main UK circulating variant), with all children unvaccinated (as per national policy at the time). We assessed illness profiles (symptom prevalence, duration, and burden), hospital presentation, and presence of long (≥28 day) illness, and calculated odds ratios for symptoms presenting within the first 28 days of illness. RESULTS: 694 (276 younger (5-11 years), 418 older (12-17 years)) symptomatic children tested positive for SARS-CoV-2 with Alpha infection and 706 (227 younger and 479 older) children with Delta infection. Median illness duration was short with either variant (overall cohort: 5 days (IQR 2-9.75) with Alpha, 5 days (IQR 2-9) with Delta). The seven most prevalent symptoms were common to both variants. Symptom burden over the first 28 days was slightly greater with Delta compared with Alpha infection (in younger children, 3 (IQR 2-5) symptoms with Alpha, 4 (IQR 2-7) with Delta; in older children, 5 (IQR 3-8) symptoms with Alpha, 6 (IQR 3-9) with Delta infection ). The odds of presenting several symptoms were higher with Delta than Alpha infection, including headache and fever. Few children presented to hospital, and long illness duration was uncommon, with either variant. CONCLUSIONS: COVID-19 in UK school-aged children due to SARS-CoV-2 Delta strain B.1.617.2 resembles illness due to the Alpha variant B.1.1.7., with short duration and similar symptom burden

    Social determinants, inequality, and autism

    No full text
    corecore