5 research outputs found

    Magnetoplasmon resonance in a two-dimensional electron system driven into a zero-resistance state

    Get PDF
    We report on a very strong, and a rather sharp, photoresistance peak originating from a dimensional magnetoplasmon resonance (MPR) in a high-mobility GaAs/AlGaAs quantum well driven by microwave radiation into a zero-resistance state (ZRS). The analysis of the MPR signal reveals a negative background, providing experimental evidence for the concept of absolute negative resistance associated with the ZRS. When the system is further subject to a dc field, the maxima of microwave-induced resistance oscillations decay away and the system reveals a state with close-to-zero differential resistance. The MPR peak, on the other hand, remains essentially unchanged, indicating robust Ohmic behavior under the MPR conditions

    Superradiant Decay of Cyclotron Resonance of Two-Dimensional Electron Gases

    Get PDF
    We report on the observation of collective radiative decay, or superradiance, of cyclotron resonance (CR) in high-mobility two-dimensional electron gases in GaAs quantum wells using time-domain terahertz magnetospectroscopy. The decay rate of coherent CR oscillations increases linearly with the electron density in a wide range, which is a hallmark of superradiant damping. Our fully quantum mechanical theory provides a universal formula for the decay rate, which reproduces our experimental data without any adjustable parameter. These results firmly establish the many-body nature of CR decoherence in this system, despite the fact that the CR frequency is immune to electron-electron interactions due to Kohn's theorem.Comment: 5 pages, 4 figure

    Evidence for effective mass reduction in GaAs/AlGaAs quantum wells

    Get PDF
    We have performed microwave photoresistance measurements in high mobility GaAs/AlGaAs quantum wells and investigated the value of the effective mass. Surprisingly, the effective mass, obtained from the period of microwave-induced resistance oscillations, is found to be about 12% lower than the band mass in GaAs, m(b)*. This finding provides strong evidence for electron-electron interactions which can be probed by microwave photoresistance in very high Landau levels. In contrast, the measured magnetoplasmon dispersion revealed an effective mass which is close to m(b)*, in accord with previous studies. DOI: 10.1103/PhysRevB.87.16130
    corecore