229 research outputs found

    Proteomic Analysis of Ubiquitin Ligase KEAP1 Reveals Associated Proteins That Inhibit NRF2 Ubiquitination

    Get PDF
    Somatic mutations in the KEAP1 ubiquitin ligase or its substrate NRF2 (NFE2L2) commonly occur in human cancer, resulting in constitutive NRF2-mediated transcription of cytoprotective genes. However, many tumors display high NRF2 activity in the absence of mutation, supporting the hypothesis that alternative mechanisms of pathway activation exist. Previously, we and others discovered that via a competitive binding mechanism, the proteins WTX (AMER1), PALB2 and SQSTM1 bind KEAP1 to activate NRF2. Proteomic analysis of the KEAP1 protein interaction network revealed a significant enrichment of associated proteins containing an ETGE amino acid motif, which matches the KEAP1 interaction motif found in NRF2. Like WTX, PALB2, and SQSTM1, we found that the dipeptidyl peptidase 3 (DPP3) protein binds KEAP1 via an ‘ETGE’ motif to displace NRF2, thus inhibiting NRF2 ubiquitination and driving NRF2-dependent transcription. Comparing the spectrum of KEAP1 interacting proteins with the genomic profile of 178 squamous cell lung carcinomas characterized by The Cancer Genome Atlas revealed amplification and mRNA over-expression of the DPP3 gene in tumors with high NRF2 activity but lacking NRF2 stabilizing mutations. We further show that tumor-derived mutations in KEAP1 are hypomorphic with respect to NRF2 inhibition and that DPP3 over-expression in the presence of these mutants further promotes NRF2 activation. Collectively, our findings further support the competition model of NRF2 activation and suggest that ‘ETGE’-containing proteins like DPP3 contribute to NRF2 activity in cancer

    Ccdc94 Protects Cells from Ionizing Radiation by Inhibiting the Expression of p53

    Get PDF
    DNA double-strand breaks (DSBs) represent one of the most deleterious forms of DNA damage to a cell. In cancer therapy, induction of cell death by DNA DSBs by ionizing radiation (IR) and certain chemotherapies is thought to mediate the successful elimination of cancer cells. However, cancer cells often evolve to evade the cytotoxicity induced by DNA DSBs, thereby forming the basis for treatment resistance. As such, a better understanding of the DSB DNA damage response (DSB–DDR) pathway will facilitate the design of more effective strategies to overcome chemo- and radioresistance. To identify novel mechanisms that protect cells from the cytotoxic effects of DNA DSBs, we performed a forward genetic screen in zebrafish for recessive mutations that enhance the IR–induced apoptotic response. Here, we describe radiosensitizing mutation 7 (rs7), which causes a severe sensitivity of zebrafish embryonic neurons to IR–induced apoptosis and is required for the proper development of the central nervous system. The rs7 mutation disrupts the coding sequence of ccdc94, a highly conserved gene that has no previous links to the DSB–DDR pathway. We demonstrate that Ccdc94 is a functional member of the Prp19 complex and that genetic knockdown of core members of this complex causes increased sensitivity to IR–induced apoptosis. We further show that Ccdc94 and the Prp19 complex protect cells from IR–induced apoptosis by repressing the expression of p53 mRNA. In summary, we have identified a new gene regulating a dosage-sensitive response to DNA DSBs during embryonic development. Future studies in human cancer cells will determine whether pharmacological inactivation of CCDC94 reduces the threshold of the cancer cell apoptotic response

    Demonstration of a positron beam-driven hollow channel plasma wakefield accelerator

    No full text
    International audiencePlasma wakefield accelerators have been used to accelerate electron and positron particle beams with gradients that are orders of magnitude larger than those achieved in conventional accelerators. In addition to being accelerated by the plasma wakefield, the beam particles also experience strong transverse forces that may disrupt the beam quality. Hollow plasma channels have been proposed as a technique for generating accelerating fields without transverse forces. Here we demonstrate a method for creating an extended hollow plasma channel and measure the wakefields created by an ultrarelativistic positron beam as it propagates through the channel. The plasma channel is created by directing a high-intensity laser pulse with a spatially modulated profile into lithium vapour, which results in an annular region of ionization. A peak decelerating field of 230 MeV/m is inferred from changes in the beam energy spectrum, in good agreement with theory and particle-in-cell simulations

    Fracture Limits of Maxillary Fourth Premolar Teeth in Domestic Dogs Under Applied Forces

    Get PDF
    A cadaveric study was performed to investigate the external mechanical forces required to fracture maxillary fourth premolar teeth in domestic dogs and describe a clinically relevant model of chewing forces placed on functionally important teeth in which fracture patterns are consistent with those defined by the American Veterinary Dental College (AVDC). Twenty-four maxillary fourth premolar teeth were harvested from dog cadavers. Samples consisted of teeth with surrounding alveolar bone potted in polycarbonate cylinders filled with acrylic. The cylinders were held by an aluminum device at an angle of 60° with respect to the ground. An axial compression test was performed, creating a force upon the occluso-palatal aspects of the main cusps of the crowns of the teeth. The highest compressive force prior to failure was considered the maximum force sustained by the teeth. Results showed the mean maximum force (± SD) sustained by the tested teeth at the point of fracture was 1,281 N (± 403 N) at a mean impact angle (± SD) of 59.7° (± 5.2°). The most common fracture type that occurred among all samples was a complicated crown fracture (n = 12), followed by an uncomplicated crown fracture (n = 6), complicated crown-root fracture (n = 5), and uncomplicated crown-root fracture (n = 1). There was no statistically significant correlation between dog breed, age, weight, impact angle, crown height or crown diameter, and the maximum force applied at the point of fracture. The only independent variable that remained significantly associated with maximum force was the crown height to diameter ratio (p = 0.005), suggesting that a decreased ratio increases tooth fracture resistance. The methodology described herein has been successful in creating a pattern of fracture of maxillary fourth premolar teeth consistent with that defined by the AVDC under angled compression at forces within the maximum chewing capability of the average domestic dog

    Aldo-keto reductases are biomarkers of NRF2 activity and are co-ordinately overexpressed in non-small cell lung cancer

    Get PDF
    BACKGROUND: Although the nuclear factor-erythroid 2-related factor 2 (NRF2) pathway is one of the most frequently dysregulated in cancer, it is not clear whether mutational status is a good predictor of NRF2 activity. Here we utilise four members of the aldo-keto reductase (AKR) superfamily as biomarkers to address this question. METHODS: Twenty-three cell lines of diverse origin and NRF2-pathway mutational status were used to determine the relationship between AKR expression and NRF2 activity. AKR expression was evaluated in lung cancer biopsies and Cancer Genome Atlas (TCGA) and Oncomine data sets. RESULTS: AKRs were expressed at a high basal level in cell lines carrying mutations in the NRF2 pathway. In non-mutant cell lines, co-ordinate induction of AKRs was consistently observed following activation of NRF2. Immunohistochemical analysis of lung tumour biopsies and interrogation of TCGA data revealed that AKRs are enriched in both squamous cell carcinomas (SCCs) and adenocarcinomas that contain somatic alterations in the NRF2 pathway but, in the case of SCC, AKRs were also enriched in most other tumours. CONCLUSIONS: An AKR biomarker panel can be used to determine NRF2 status in tumours. Hyperactivation of the NRF2 pathway is far more prevalent in lung SCC than previously predicted by genomic analyses
    • …
    corecore