2,632 research outputs found

    Near-Infrared Spectroscopy of the Bright Kuiper Belt Object 2000 EB173

    Get PDF
    We have obtained a near-infrared spectrum of the bright Kuiper Belt object 2000 EB173; the spectrum appears featureless. The spectrum has a sufficient signal-to-noise ratio to rule out the 1.5 and 2.0 μm absorption from water ice even at the low level seen in the Centaur Chariklo. In addition, we can rule out a 2.3 μm absorption at the level seen in the Centaur Pholus

    Impact of Home Field Advantage: Analyzed Across Three Professional Sports

    Full text link
    We examined the impact of home-field advantage in the NFL, NBA, and MLB. We defined home-field advantage as winning more than 50% of the home games. Additionally, we took into consideration how season length could act as a moderator and influence the impact of home-field advantage. We collected data from the 2015 NBA and MLB seasons and the 2015 and 2016 NFL seasons to determine statistical significance. In total, we got data from 4,141 games to analyze. We found that there is statistical significance that the home team has a better chance of winning than the away team across the NFL, NBA, and MLB. We also found that season length has a significant impact on home team winning percentage

    The SIC Question: History and State of Play

    Full text link
    Recent years have seen significant advances in the study of symmetric informationally complete (SIC) quantum measurements, also known as maximal sets of complex equiangular lines. Previously, the published record contained solutions up to dimension 67, and was with high confidence complete up through dimension 50. Computer calculations have now furnished solutions in all dimensions up to 151, and in several cases beyond that, as large as dimension 844. These new solutions exhibit an additional type of symmetry beyond the basic definition of a SIC, and so verify a conjecture of Zauner in many new cases. The solutions in dimensions 68 through 121 were obtained by Andrew Scott, and his catalogue of distinct solutions is, with high confidence, complete up to dimension 90. Additional results in dimensions 122 through 151 were calculated by the authors using Scott's code. We recap the history of the problem, outline how the numerical searches were done, and pose some conjectures on how the search technique could be improved. In order to facilitate communication across disciplinary boundaries, we also present a comprehensive bibliography of SIC research.Comment: 16 pages, 1 figure, many references; v3: updating bibliography, dimension eight hundred forty fou

    The Volatile Composition of the Split Ecliptic comet 73P/Schwassmann-Wachmann 3: A Comparison of Fragments C and B

    Get PDF
    The composition of fragments C and B of the Jupiter-family comet 73P/Schwassmann-Wachmann 3 (SW3) was investigated in early April of 2006 at IR wavelengths using high-dispersion echelle spectroscopy. Both fragments were depleted in ethane, and C was depleted in most forms of volatile carbon. In particular, fragment C shows a severe depletion of CH_(3)OH but a "normal" abundance of HCN (which has a similar volatility). Thermal processing is a possible explanation, but since fragment B is perhaps sublimating fresher material because of the frequent outbursts and fragmentation, the observed depletions might have cosmogonic implications. The chemistry of the volatile ices in SW3, like in the Oort Cloud comet C/1999 S4 (LINEAR), may be associated with sublimation of icy mantles from precometary grains followed by subsequent gas-phase chemistry and recondensation

    Imaging the Haro 6-10 Infrared Companion

    Get PDF
    We present an infrared imaging study of the low-mass pre-main-sequence binary system Haro 6-10. This system is one of a handful in which the optically visible primary has the characteristics of a normal T Tauri star, while the secondary is a so-called "infrared companion" (IRC), a strongly extincted object that emits most of its luminosity in the infrared. A speckle holographic technique was used to produce nearly diffraction-limited images on three nights over a 1 yr period starting in late 1997. The images show that the IRC is obscured and surrounded by a compact, irregular, and variable nebula. This structure is in striking contrast to the well-ordered edge-on disk associated with HK Tauri B, the extincted companion to another T Tauri star of similar age. A new, resolved intensity peak was found 0".4 southwest of the IRC. We suggest that it may represent light scattered by a clump of dusty material illuminated by starlight escaping along an outflow-carved cavity in the IRC envelope. The primary star became fainter and the companion became more extended during the observing period

    Aminomethanol water elimination: Theoretical examination

    Get PDF
    The mechanism for the formation of hexamethylenetetraamine predicts the formation of aminomethanol from the addition of ammonia to formaldehyde. This molecule subsequently undergoes unimolecular decomposition to form methanimine and water. Aminomethanol is the predicted precursor to interstellar glycine, and is therefore of great interest for laboratory spectroscopic study, which would serve as the basis for observational searches. The height of the water loss barrier is therefore useful in the determination of an appropriate experimental approach for spectroscopic characterization of aminomethanol. We have determined the height of this barrier to be 55 kcal/mol at ambient temperatures. In addition, we have determined the infinite-pressure Rice-Ramsperger-Kassel-Marcus unimolecular decomposition rate to be < 10^(-25) s^(-1) at 300 K, indicating gas-phase kinetic stability for typical laboratory and hot core temperatures. Therefore, spectroscopic characterization of and observational searches for this molecule should be straightforward provided an efficient formation mechanism can be found

    Acceleration of Radiative Decay of Photon Counts With Increasing Numbers of Measurement Units: A Potential Large Scale Negative Zeno Effect That Matches With Lorentz Contraction and Photon Acceleration Durations

    Get PDF
    The reverse Zeno effect whereby an unstable quantum state associated with radiative decay is accelerated by frequent measurements was demonstrated experimentally for numbers of spontaneous photons in a 3 m3 hyperdark chamber during the 60 s following a burst of applied photons. Numbers of photon counts were measured from one digital photomultiplier unit when either 1 (the reference) or 2, 3, or 4 units were measuring simultaneously. There was a median decrease of 50 photons per s with the addition of each additional simultaneous measurement by another unit. The energy was ~ 10-17 J per s and is equivalent to a wavelength of 10 nm. This quantity is equivalent to the energy of one neuron in the human brain displaying its upper limit (~1 kHz).Â&nbsp; The results suggest that this increment of energy may be a standard quantity that reflects the numbers of measurements by similar photoelectric currents to the decay of a single photon burst. The approximately 30 to 40 s required for the decay of photons per unit to inflect towards asymptote is consistent with the solution for the Lorentz contraction for the shift in electron mass-energy (10-17 J) with a wavelength of ~10 nm. The 30 to 40 s value is a solution for several applications to novel calculations involving fundamental parameters within the structure of space-time

    Non-detection of L-band Line Emission from the Exoplanet HD189733b

    Get PDF
    We attempt to confirm bright non-local thermodynamic equilibrium (non-LTE) emission from the exoplanet HD 189733b at 3.25 μm, as recently reported by Swain et al. based on observations at low spectral resolving power (λ/δλ ≈ 30). Non-LTE emission lines from gas in an exoplanet atmosphere will not be significantly broadened by collisions, so the measured emission intensity per resolution element must be substantially brighter when observed at high spectral resolving power. We observed the planet before, during, and after a secondary eclipse event at a resolving power λ/δλ = 27, 000 using the NIRSPEC spectrometer on the Keck II telescope. Our spectra cover a spectral window near the peak found by Swain et al., and we compare emission cases that could account for the magnitude and wavelength dependence of the Swain et al. result with our final spectral residuals. To model the expected line emission, we use a general non-equilibrium formulation to synthesize emission features from all plausible molecules that emit in this spectral region. In every case, we detect no line emission to a high degree of confidence. After considering possible explanations for the Swain et al. results and the disparity with our own data, we conclude that an astrophysical source for the putative non-LTE emission is unlikely. We note that the wavelength dependence of the signal seen by Swain et al. closely matches the 2ν_2 band of water vapor at 300 K, and we suggest that an imperfect correction for telluric water is the source of the feature claimed by Swain et al

    A domain ontology for the non-coding RNA field

    Get PDF
    Identification of non-coding RNAs (ncRNAs) has been significantly enhanced due to the rapid advancement in sequencing technologies. On the other hand, semantic annotation of ncRNA data lag behind their identification, and there is a great need to effectively integrate discovery from relevant communities. To this end, the Non-Coding RNA Ontology (NCRO) is being developed to provide a precisely defined ncRNA controlled vocabulary, which can fill a specific and highly needed niche in unification of ncRNA biology

    The Non-Coding RNA Ontology : a comprehensive resource for the unification of non-coding RNA biology

    Get PDF
    In recent years, sequencing technologies have enabled the identification of a wide range of non-coding RNAs (ncRNAs). Unfortunately, annotation and integration of ncRNA data has lagged behind their identification. Given the large quantity of information being obtained in this area, there emerges an urgent need to integrate what is being discovered by a broad range of relevant communities. To this end, the Non-Coding RNA Ontology (NCRO) is being developed to provide a systematically structured and precisely defined controlled vocabulary for the domain of ncRNAs, thereby facilitating the discovery, curation, analysis, exchange, and reasoning of data about structures of ncRNAs, their molecular and cellular functions, and their impacts upon phenotypes. The goal of NCRO is to serve as a common resource for annotations of diverse research in a way that will significantly enhance integrative and comparative analysis of the myriad resources currently housed in disparate sources. It is our belief that the NCRO ontology can perform an important role in the comprehensive unification of ncRNA biology and, indeed, fill a critical gap in both the Open Biological and Biomedical Ontologies (OBO) Library and the National Center for Biomedical Ontology (NCBO) BioPortal. Our initial focus is on the ontological representation of small regulatory ncRNAs, which we see as the first step in providing a resource for the annotation of data about all forms of ncRNAs. The NCRO ontology is free and open to all users
    corecore