11 research outputs found

    Solution blow spun poly-L-lactic acid/ceramic fibrous composites for bone implant applications

    No full text
    Every bone implant to work correctly after implantation needs to integrate with the surrounding bone. To enhance such a process, called osseointegration, various techniques of implant surface modification emerged. One of the approaches is based on the deposition of nano- and submicron materials on the implant surface. This paper presents a solution blow spinning process for producing poly-L-lactic acid (PLLA)/ceramic fibrous composites designed to be deposited directly onto orthopaedic implants prior to implantation to increase osseointegration. We produced plain PLLA fibrous materials for comparison, and fibrous composite materials with -tricalcium phosphate (TCP), hydroxyapatite nanoparticles (nHAp) and hydroxyapatite nanoparticles modified with lecithin (nHAp-LE). We performed the structural analysis of produced materials with scanning electron microscopy, gravimetric determination of porosity, and water contact angle measurement. We also used infrared spectroscopy, Alizarin Red S staining, and cytotoxicity evaluation to conclude that PLLA/nHAp-LE composite material shows the most promising properties to be applied as surface modification of bone implants. To visualise fibrous composite deposition on implants, we used two models: titanium plate and stainlesssteel bolt. Thus, we showed that the solution blow spun materials can be used for surface modification of orthopaedic implants

    Properties of polyurethane fibrous materials produced by solution blow spinning

    No full text
    The study aimed to produce nano- and microfibrous materials from polyurethane (ChronoFlex®C75A/ C75D in 1,1,1,3,3,3–hexafluoro–2–propanol) by solution blow spinning. Experiments were carried out in order to determine the impact of solution blow spinning parameters on fibre diameter and quality of produced materials. The following properties of produced fibre scaffolds were investigated: fibre size, porosity and pore size, wettability, and mechanical properties. The results confirmed that produced nano- and microfibrous materials could be potentially used as scaffolds in three-dimensional cell and tissue cultures

    Magnetic polyurethane nanomaterials: A novel approach for in vitro cardiac cell maturation and culture

    No full text
    In this study, we have investigated how new composite material (magnetic polyurethane (PU) nanofibers) influences the culture and maturation of cardiomyocyte cells. Magnetic iron (II, III) oxide nanoparticles (Fe3O4, MNPs) were incorporated into the nanofiber structure using the solution blow spinning (SBS) method, resulting in composite magnetic nanofiber mats. These mats were characterized by physicochemical, optical (Young's modulus, wettability, surface zeta potential, autofluorescence), and magnetic properties. It was found that adding MNPs provided magnetic functionality and significantly reduced the autofluorescence properties of nanofiber mats. High viability of Human Cardiomyocytes (HCM) cells was obtained for magnetic nanofibrous mats. The results showed that the presence of MNPs increased the viability of HCM cells by 70% (p < 0.05) compared to cultures on non-magnetic nanofibers. Moreover, AMF increased troponin T and MYH6 levels for ten days of culture on magnetic nanofibers. The results suggest that culturing cardiac cells on magnetic PU nanofibrous mats more effectively replicates in vivo conditions than cultures on non-magnetic nanofibers, which may benefit cardiovascular disease research

    Chitosan-Human Bone Composite Granulates for Guided Bone Regeneration

    No full text
    The search for the perfect bone graft material is an important topic in material science and medicine. Despite human bone being the ideal material, due to its composition, morphology, and familiarity with cells, autografts are widely considered demanding and cause additional stress to the patient because of bone harvesting. However, human bone from tissue banks can be used to prepare materials in eligible form for transplantation. Without proteins and fats, the bone becomes a non-immunogenic matrix for human cells to repopulate in the place of implantation. To repair bone losses, the granulate form of the material is easy to apply and forms an interconnected porous structure. A granulate composed of β-tricalcium phosphate, pulverized human bone, and chitosan—a potent biopolymer applied in tissue engineering, regenerative medicine, and biotechnology—has been developed. A commercial encapsulator was used to obtain granulate, using chitosan gelation upon pH increase. The granulate has been proven in vitro to be non-cytotoxic, suitable for MG63 cell growth on its surface, and increasing alkaline phosphatase activity, an important biological marker of bone tissue growth. Moreover, the granulate is suitable for thermal sterilization without losing its form—increasing its convenience for application in surgery for guided bone regeneration in case of minor or non-load bearing voids in bone tissue

    Chitosan-Enriched Solution Blow Spun Poly(Ethylene Oxide) Nanofibers with Poly(Dimethylsiloxane) Hydrophobic Outer Layer for Skin Healing and Regeneration

    No full text
    Chitosan (CS)/poly(ethylene oxide) (PEO)-based nanofiber mats have attracted particular attention as advanced materials for medical and pharmaceutical applications. In the scope of present studies, solution blow spinning was applied to produce nanofibers from PEO and CS and physicochemical and biopharmaceutical studies were carried out to investigate their potential as wound nanomaterial for skin healing and regeneration. Additional coating with hydrophobic poly(dimethylsiloxane) was applied to favor removal of nanofibers from the wound surface. Unmodified nanofibers displayed highly porous structure with the presence of uniform, randomly aligned nanofibers, in contrast to coated materials in which almost all the free spaces were filled in with poly(dimethylsiloxane). Infrared spectroscopy indicated that solution blow technique did not influence the molecular nature of native polymers. Obtained nanofibers exhibited sufficient wound exudate absorbency, which appears beneficial to moisturize the wound bed during the healing process. Formulations displayed greater tensile strength as compared to commercial hydrofiber-like dressing materials comprised of carboxymethylcellulose sodium or calcium alginate, which points toward their protective function against mechanical stress. Coating with hydrophobic poly(dimethylsiloxane) (applied to favor nanofiber removal from the wound surface) impacted porosity and decreased both mechanical properties and adherence to excised human skin, though the obtained values were comparable to those attained for commercial hydrofiber-like materials. In vitro cytotoxicity and irritancy studies showed biocompatibility and no skin irritant response of nanofibers in contact with a reconstituted three-dimensional human skin model, while scratch assay using human fibroblast cell line HDFa revealed the valuable potential of CS/PEO nanofibers to promote cell migration at an early stage of injury
    corecore