39 research outputs found

    UGT pharmacogenomics in drug metabolism and diseases

    Get PDF
    Glucuronidation, mediated by UDP-glucuronosyltransferase enzymes (UGTs), is a major phase II biotransformation pathway and, complementary to phase I metabolism and membrane transport, one of the most important cellular defense mechanism responsible for the inactivation of therapeutic drugs, other xenobiotics and numerous endogenous molecules. Individual variability in UGT enzymatic pathways is significant and may have profound pharmacological and toxicological implications. Several genetic and genomic processes are underlying this variability and are discussed in the context of drug metabolism and diseases such as cancer

    Crosstalk between alternatively spliced UGT1A isoforms and colon cancer cell metabolism

    Get PDF
    Alternative splicing at the human glucuronosyltransferase 1 gene locus (UGT1) produces alternate isoforms UGT1A_i2s that control glucuronidation activity through protein-protein interactions. Here, we hypothesized that UGT1A_i2s function into a complex protein network connecting other metabolic pathways with influence on cancer cell metabolism. This is based on a pathway enrichment analysis of proteomic data that identified several high-confidence candidate interaction proteins of UGT1A_i2 proteins in human tissues, namely the rate-limiting enzyme of glycolysis pyruvate kinase (PKM), which plays a critical role in cancer cell metabolism and tumor growth. The partnership of UGT1A_i2 and PKM2 was confirmed by co-immunoprecipitation in the HT115 colon cancer cells and was supported by a partial co-localization of these two proteins. In support of a functional role for this partnership, depletion of UGT1A_i2 proteins in HT115 cells enforced the Warburg effect with higher glycolytic rate at the expense of mitochondrial respiration, and led to lactate accumulation. Untargeted metabolomics further revealed a significantly altered cellular content of 58 metabolites including many intermediates derived from the glycolysis and TCA cycle pathways. These metabolic changes were associated with a greater migration potential. The potential relevance of our observations is supported by the down-regulation of UGT1A_i2s mRNA in colon tumors compared to normal tissues. Alternate UGT1A variants may thus be part of the expanding compendium of metabolic pathways involved in cancer biology directly contributing to the oncogenic phenotype of colon cancer cells. Findings uncover new aspects of UGT functions diverging from their transferase activity

    Posttranscriptional regulation of UGT2B10 hepatic expression and activity by alternative splicing

    Get PDF
    The detoxification enzyme UDP-glucuronosyltransferase UGT2B10 is specialized in the N-linked glucuronidation of many drugs and xenobiotics. Preferred substrates possess tertiary aliphatic amines and heterocyclic amines such as tobacco carcinogens and several anti-depressants and anti-psychotics. We hypothesized that alternative splicing (AS) constitutes a mean to regulate steady state levels of UGT2B10 and enzyme activity. We established the transcriptome of UGT2B10 in normal and tumoral tissues of multiple individuals. Highest expression was in the liver, where ten AS transcripts represented 50% of the UGT2B10 transcriptome in 50 normal livers and 44 hepatocellular carcinomas. One abundant class of transcripts involves a novel exonic sequence and leads to two alternative (alt.) variants with novel in-frame C-termini of 10 or 65 amino acids. Their hepatic expression was highly variable among individuals, correlated with canonical transcript levels, and was 3.5 fold higher in tumors. Evidence for their translation in liver tissues was acquired by mass spectrometry. In cell models, they co-localized with the enzyme and influenced the conjugation of amitriptyline and levomedetomidine by repressing or activating the enzyme (40-70%; P<0.01), in a cell context-specific manner. A high turnover rate for the alt. proteins, regulated by the proteasome, was observed in contrast to the more stable UGT2B10 enzyme. Moreover, a drug-induced remodelling of UGT2B10 splicing was demonstrated in the HepaRG hepatic cell model, which favored alt. variants expression over the canonical transcript. Our findings support a significant contribution of AS in the regulation of UGT2B10 expression in the liver with an impact on enzyme activity

    Quantitative profiling of the UGT transcriptome in human drug metabolizing tissues

    Get PDF
    Alternative splicing as a mean to control gene expression and diversify function is suspected to considerably influence drug response and clearance. We report the quantitative expression profiles of the human UGT genes including alternatively spliced variants not previously annotated established by deep RNA-sequencing in tissues of pharmacological importance. We reveal a comprehensive quantification of the alternative UGT transcriptome that differ across tissues and among individuals. Alternative transcripts that comprise novel in-frame sequences associated or not with truncations of the 5’ and/or 3’ termini, significantly contribute to the total expression levels of each UGT1 and UGT2 gene averaging 21% in normal tissues, with expression of UGT2 variants surpassing those of UGT1. Quantitative data expose preferential tissue expression patterns and remodelling in favour of alternative variants upon tumorigenesis. These complex alternative splicing programs have the strong potential to contribute to interindividual variability in drug metabolism in addition to diversify the UGT proteome

    Unravelling the transcriptomic landscape of the major phase II UDP-glucuronosyltransferase drug metabolizing pathway using targeted RNA sequencing

    Get PDF
    A comprehensive view of the human UDP-glucuronosyltransferase (UGT) transcriptome is a prerequisite to the establishment of an individual’s UGT metabolic glucuronidation signature. Here, we uncover the transcriptome landscape of the ten human UGT loci genes in normal and tumoral metabolic tissues by targeted RNA next generation sequencing. Alignment on the human hg19 reference genome identifies 234 novel exon-exon junctions. We recover all previously known UGT1 and UGT2 enzyme-coding transcripts and identify over 130 structurally and functionally diverse novel UGT variants. We further expose a revised genomic structure of UGT loci and provide a comprehensive repertoire of transcripts for each UGT gene. Data also uncover a remodelling of the UGT transcriptome occurring in a tissue- and tumor-specific manner. The complex alternative splicing program regulating UGT expression and protein functions is likely critical in determining detoxification capacity of an organ and stress-related responses, with significant impact on drug responses and diseases. Keywords: Alternative splicing, transcriptome, glucuronidation, RNA sequencing, drug metabolism, glucuronosyltransferase (UGT

    PARPs database: A LIMS systems for protein-protein interaction data mining or laboratory information management system

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In the "post-genome" era, mass spectrometry (MS) has become an important method for the analysis of proteins and the rapid advancement of this technique, in combination with other proteomics methods, results in an increasing amount of proteome data. This data must be archived and analysed using specialized bioinformatics tools.</p> <p>Description</p> <p>We herein describe "PARPs database," a data analysis and management pipeline for liquid chromatography tandem mass spectrometry (LC-MS/MS) proteomics. PARPs database is a web-based tool whose features include experiment annotation, protein database searching, protein sequence management, as well as data-mining of the peptides and proteins identified.</p> <p>Conclusion</p> <p>Using this pipeline, we have successfully identified several interactions of biological significance between PARP-1 and other proteins, namely RFC-1, 2, 3, 4 and 5.</p

    Investigation of PARP-1, PARP-2, and PARG interactomes by affinity-purification mass spectrometry

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Poly(ADP-ribose) polymerases (PARPs) catalyze the formation of poly(ADP-ribose) (pADPr), a post-translational modification involved in several important biological processes, namely surveillance of genome integrity, cell cycle progression, initiation of the DNA damage response, apoptosis, and regulation of transcription. Poly(ADP-ribose) glycohydrolase (PARG), on the other hand, catabolizes pADPr and thereby accounts for the transient nature of poly(ADP-ribosyl)ation. Our investigation of the interactomes of PARP-1, PARP-2, and PARG by affinity-purification mass spectrometry (AP-MS) aimed, on the one hand, to confirm current knowledge on these interactomes and, on the other hand, to discover new protein partners which could offer insights into PARPs and PARG functions.</p> <p>Results</p> <p>PARP-1, PARP-2, and PARG were immunoprecipitated from human cells, and pulled-down proteins were separated by gel electrophoresis prior to in-gel trypsin digestion. Peptides were identified by tandem mass spectrometry. Our AP-MS experiments resulted in the identifications of 179 interactions, 139 of which are novel interactions. Gene Ontology analysis of the identified protein interactors points to five biological processes in which PARP-1, PARP-2 and PARG may be involved: RNA metabolism for PARP-1, PARP-2 and PARG; DNA repair and apoptosis for PARP-1 and PARP-2; and glycolysis and cell cycle for PARP-1.</p> <p>Conclusions</p> <p>This study reveals several novel protein partners for PARP-1, PARP-2 and PARG. It provides a global view of the interactomes of these proteins as well as a roadmap to establish the systems biology of poly(ADP-ribose) metabolism.</p

    Expression analysis of mitotic spindle checkpoint genes in breast carcinoma: role of NDC80/HEC1 in early breast tumorigenicity, and a two-gene signature for aneuploidy

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Aneuploidy and chromosomal instability (CIN) are common abnormalities in human cancer. Alterations of the mitotic spindle checkpoint are likely to contribute to these phenotypes, but little is known about somatic alterations of mitotic spindle checkpoint genes in breast cancer.</p> <p>Methods</p> <p>To obtain further insight into the molecular mechanisms underlying aneuploidy in breast cancer, we used real-time quantitative RT-PCR to quantify the mRNA expression of 76 selected mitotic spindle checkpoint genes in a large panel of breast tumor samples.</p> <p>Results</p> <p>The expression of 49 (64.5%) of the 76 genes was significantly dysregulated in breast tumors compared to normal breast tissues: 40 genes were upregulated and 9 were downregulated. Most of these changes in gene expression during malignant transformation were observed in epithelial cells.</p> <p>Alterations of nine of these genes, and particularly <it>NDC80</it>, were also detected in benign breast tumors, indicating that they may be involved in pre-neoplastic processes.</p> <p>We also identified a two-gene expression signature (<it>PLK1 </it>+ <it>AURKA</it>) which discriminated between DNA aneuploid and DNA diploid breast tumor samples. Interestingly, some DNA tetraploid tumor samples failed to cluster with DNA aneuploid breast tumors.</p> <p>Conclusion</p> <p>This study confirms the importance of previously characterized genes and identifies novel candidate genes that could be activated for aneuploidy to occur. Further functional analyses are required to clearly confirm the role of these new identified genes in the molecular mechanisms involved in breast cancer aneuploidy. The novel genes identified here, and/or the two-gene expression signature, might serve as diagnostic or prognostic markers and form the basis for novel therapeutic strategies.</p

    Quantitative Profiling of Human Renal UDP-glucuronosyltransferases and Glucuronidation Activity: A Comparison of Normal and Tumoral Kidney Tissues

    Get PDF
    Renal metabolism by UDP-glucuronosyltransferase (UGT) enzymes is central to the clearance of many drugs. However, significant discrepancies about the relative abundance and activity of individual UGT enzymes in the normal kidney prevail among reports, whereas glucuronidation in tumoral kidney has not been examined. In this study, we performed an extensive profiling of glucuronidation metabolism in normal (n = 12) and tumor (n = 14) kidneys using targeted mass spectrometry quantification of human UGTs. We then correlated UGT protein concentrations with mRNA levels assessed by quantitative polymerase chain reaction and with conjugation activity for the major renal UGTs. Beyond the wide interindividual variability in expression levels observed among kidney samples, UGT1A9, UGT2B7, and UGT1A6 are the most abundant renal UGTs in both normal and tumoral tissues based on protein quantification. In normal kidney tissues, only UGT1A9 protein levels correlated with mRNA levels, whereas UGT1A6, UGT1A9, and UGT2B7 quantification correlated significantly with their mRNA levels in tumor kidneys. Data support that posttranscriptional regulation of UGT2B7 and UGT1A6 expression is modulating glucuronidation in the kidney. Importantly, our study reveals a significant decreased glucuronidation capacity of neoplastic kidneys versus normal kidneys that is paralleled by drastically reduced UGT1A9 and UGT2B7 mRNA and protein expression. UGT2B7 activity is the most repressed in tumors relative to normal tissues, with a 96-fold decrease in zidovudine metabolism, whereas propofol and sorafenib glucuronidation is decreased by 7.6- and 5.2-fold, respectively. Findings demonstrate that renal drug metabolism is predominantly mediated by UGT1A9 and UGT2B7 and is greatly reduced in kidney tumors

    Multiplexed Targeted Quantitative Proteomics Predicts Hepatic Glucuronidation Potential

    Get PDF
    Phase II metabolism is prominently governed by UDP-glucuronosyltransferases (UGTs) in humans. These enzymes regulate the bioactivity of many drugs and endogenous small molecules in many organs, including the liver, a major site of regulation by the glucuronidation pathway. This study determined the expression of hepatic UGTs by targeted proteomics in 48 liver samples and by measuring the glucuronidation activity using probe substrates. It demonstrates the sensitivity and accuracy of nano-ultra-performance liquid chromatography with tandem mass spectrometry to establish the complex expression profiles of 14 hepatic UGTs in a single analysis. UGT2B7 is the most abundant UGT in our collection of livers, expressed at 69 pmol/mg microsomal proteins, whereas UGT1A1, UGT1A4, UGT2B4, and UGT2B15 are similarly abundant, averaging 30–34 pmol/mg proteins. The average relative abundance of these five UGTs represents 81% of the measured hepatic UGTs. Our data further highlight the strong relationships in the expression of several UGTs. Most notably, UGT1A4 correlates with most measured UGTs, and the expression levels of UGT2B4/UGT2B7 displayed the strongest correlation. However, significant interindividual variability is observed for all UGTs, both at the level of enzyme concentrations and activity (coefficient of variation: 45%–184%). The reliability of targeted proteomics quantification is supported by the high correlation between UGT concentration and activity. Collectively, these findings expand our understanding of hepatic UGT profiles by establishing absolute hepatic concentrations of 14 UGTs and further suggest coregulated expression between most abundant hepatic UGTs. Data support the value of multiplexed targeted quantitative proteomics to accurately assess specific UGT concentrations in liver samples and hepatic glucuronidation potential
    corecore