220 research outputs found
Germination, croissance et modÚles cinétiques
Il est gĂ©nĂ©ralement admis que les transformations chimiques des solides divisĂ©s (rĂ©action avec un ou plusieurs gaz ou dĂ©composition thermique) mettent en jeu deux processus, la germination et la croissance, dont les mĂ©canismes sont diffĂ©rents. Leur vitesse Ă©volue donc diffĂ©remment avec la tempĂ©rature et la pression partielle des gaz. En fait, en oxydation des mĂ©taux et alliages, le processus de germination est rarement pris en compte exceptĂ© dans des conditions trĂšs particuliĂšres, par exemple avec des surfaces prĂ©alablement traitĂ©es sous ultra-vide pour Ă©liminer toute trace d'oxyde natif, et avec des conditions d'oxydation trĂšs douces (faible pression, faible tempĂ©rature). Donc en gĂ©nĂ©ral pour un mĂ©tal Ă haute tempĂ©rature, le seul processus responsable de l'oxydation est la croissance de la couche d'oxyde. De plus, les modĂšles cinĂ©tiques reposent gĂ©nĂ©ralement sur l'hypothĂšse d'Ă©chantillons plans de trĂšs faible Ă©paisseur (plaquettes). Ainsi les lois cinĂ©tiques peuvent ĂȘtre calculĂ©es pour une Ă©tape limitante donnĂ©e, d'oĂč par exemple la loi parabolique en rĂ©gime diffusionnel, et la loi linĂ©aire en rĂ©gime d'interface. Il est cependant intĂ©ressant d'Ă©largir le cadre de la cinĂ©tique d'oxydation Ă des situations plus compliquĂ©es oĂč le solide se prĂ©sente sous la forme d'un ensemble de grains et peut rĂ©agir avec un ou plusieurs gaz. Comment dans ce cas calculer la loi cinĂ©tique donnant la variation de la prise de masse au cours du temps ? On conçoit aisĂ©ment qu'il soit nĂ©cessaire de considĂ©rer la forme gĂ©omĂ©trique des grains et la croissance du produit formĂ©, mais cela ne suffit pas, il faut Ă©galement tenir compte de la germination qui, dans ce cas, se produit Ă la surface des grains. Le but du cours est de montrer comment construire un modĂšle cinĂ©tique complet, en prĂ©cisant les hypothĂšses communes et spĂ©cifiques aux diffĂ©rents modĂšles possibles. L'utilisation de logiciels de cinĂ©tique hĂ©tĂ©rogĂšne sera Ă©galement Ă©voquĂ©e
Influence of water vapor pressure on the induction period during Li2SO4*H2O single crystals dehydration
International audienceThe dehydration of Li2SO4*H2O single crystals at 80 °C has been studied by means of both isothermal thermogravimetry at 2.6, 3.6 and 4.6 hPa of water vapor and environmental scanning electron microscope. Thermogravimetric experiments allowed the determination of induction periods. Distributions of these isoconversion induction periods for a large number of single crystals showed that increasing the water vapor pressure produced a longer induction period. Moreover, the shape of the distributions of the induction periods over a large number of single crystals changed from one mode at 2.6 hPa to two modes at 3.6 and 4.6 hPa. Using an environmental scanning electron microscope, this result could be attributed to differences in nucleation rates at edges and faces of the single crystals. Highlights âș We study nucleation process during thermal decomposition of solid. âș 2 nucleation modes are considered as nuclei appear on crystal edges and faces. âș Nucleation on the edges is faster than on the faces. âș When the water vapor pressure is increased, nucleation on faces is delayed. âș Nucleation on edges withdraws when water vapor pressure is increased
Lois cinétiques et calcul des réacteurs gaz-solide
National audienceAlors que les expressions de vitesse de rĂ©actions gaz â solide utilisĂ©es dans la simulation des rĂ©acteurs supposent que la vitesse Ă un instant donnĂ© est dĂ©terminĂ©e par la connaissance des valeurs des variables intensives (tempĂ©rature, pression, composition de la phase gazeuse) et du degrĂ© d'avancement de la rĂ©action Ă cet instant, on montre que cette propriĂ©tĂ© n'est pas toujours vraie. On montre qu'elle est mise en dĂ©faut, en particulier, lorsque les deux processus de germination et de croissance se dĂ©roulent simultanĂ©ment, la vitesse Ă un instant donnĂ©e dĂ©pend alors de l'histoire subie par l'Ă©chantillon. Ce phĂ©nomĂšne complique singuliĂšrement l'expression de la vitesse lorsque la rĂ©action se dĂ©roule dans des conditions telles que toutes les grandeurs intensives ne restent pas constantes. Un exemple montre comment la modĂ©lisation doit ĂȘtre adaptĂ©e dans le cas d'une dĂ©composition se dĂ©roulant Ă tempĂ©rature variable dans le temps
De l'analyse critique des modÚles cinétiques usuels des réactions solide-gaz vers ClN3, un logiciel de simulation et d'interprétation des expériences
National audienceDepuis de nombreuses annĂ©es, les modĂšles analytiques utilisĂ©s pour l'interprĂ©tation des courbes cinĂ©tiques alpha(t) relatives aux transformations chimiques de solides (isotherme, isobare) (dĂ©compositions thermiques, rĂ©duction d'oxydes par un gaz, etc ...) reposent sur des hypothĂšses trĂšs restrictives conduisant Ă une Ă©quation de vitesse (1) oĂč A est appelĂ© le « terme prĂ©-exponentiel », E est l'Ă©nergie d'activation apparente et f(alpha) est une fonction analytique qui dĂ©pend du modĂšle cinĂ©tique. Cet article prĂ©sente d'abord une analyse critique de l'utilisation abusive de cette Ă©quation en prĂ©cisant les conditions dans lesquelles elle est valable. Une nouvelle formulation plus gĂ©nĂ©rale de la vitesse est ensuite explicitĂ©e sur la base d'hypothĂšses relatives aux processus de germination et de croissance de la nouvelle phasedĂ©crite par l'Ă©quation(2) E(t) pouvant ĂȘtre une fonction analytique de la variable 'alpha" dans des cas trĂšs particuliers de germination ou croissance instantanĂ©e, et la variable 'phi" Ă©tant une fonction des contraintes thermodynamiques (pression, tempĂ©rature, ...). Dans le cas gĂ©nĂ©ral oĂč les processus de germination et croissance sont concomitants, deux familles de modĂšles sont envisagĂ©es selon que la croissance est isotrope ou anisotrope. En particulier, les modĂšles de germination-croissance sont basĂ©s sur l'apparition des germes en surface des grains, conformĂ©ment Ă la rĂ©alitĂ© physique, contrairement aux lois d'Avrami (germination en volume, volume infini) qui peuvent conduire aprĂšs approximation Ă des Ă©quations de vitesse de type (1). L'Ă©quation (2) offre la possibilitĂ© de calculer une quarantaine de modĂšles cinĂ©tiques diffĂ©rents, incluant ceux relatifs Ă l'Ă©quation (1). Afin de visualiser l'allure des courbes cinĂ©tiques calculĂ©es et de les comparer aux courbes expĂ©rimentales, un outil de simulation a Ă©tĂ© dĂ©veloppĂ© : CIN3 (IDDN N° FR001130014.000.SP.2009.000.30625). Des simulations basĂ©es sur des rĂ©actions Ă©tudiĂ©es au laboratoire sont prĂ©sentĂ©es afin d'illustrer les potentialitĂ©s du logiciel CIN3
Kinetic modeling of low temperature oxidation of copper nanoparticles by O2
International audienceThe mechanism and kinetics of copper nanoparticles oxidation at low temperature were investigated using thermogravimetry (TGA), differential scanning calorimetry (DSC), X-Ray diffraction (XRD) and transmission electron microscopy (TEM). Isothermal and isobaric studies of the oxidation reaction were carried out at various temperatures. It was found that working under an oxygen partial pressure of 1kPa in the temperature range 125 -145°C leads to reaction where nucleation of the oxide phase is in competition with its growth. The study of the dependency of the growth rate on the oxygen partial pressure under 10 kPa has shown the adsorption of oxygen at the surface of the oxide to be the rate-determining step. A mechanism and a kinetic model have been established to interpret the experimental curves
From the drawbacks of the Arrhenius-f(α) rate equation towards a more general formalism and new models for the kinetic analysis of solid-gas reactions
International audienceSince many years the kinetic models used for interpreting the kinetic curves α(t) relative to the chemical transformations of solids such as thermal decomposition, reduction, oxidation, etc., rely on very restrictive assumptions to which corresponds the following equation: dalpha/dt=Aexp(-E/RT)f(alpha) (a) where A is called the "pre-exponential term", E is the "apparent activation energy", and f(α) is a mathematical function which depends of the kinetic model. This article first presents a critical analysis of Eq. (a) by detailing the conditions in which it is rigorously correct. A more general equation is then proposed on the basis of assumptions related to the nucleation and growth processes of the new phase: dalpha/dt=Phi((T, Pi)Sm(t, ...) (b) Sm(t, ...) being a function of α only in very particular cases of instantaneous nucleation or growth, and Ï being related to the rate-determining step and varying only with thermodynamic variables (temperature, partial pressures Pi, ...).The advantages of Eq. (b) are of two types: firstly, the variables temperature and partial pressure of gases may not be separated in the expression of Ï (no Arrhenius dependence with temperature); secondly, in gas-solid systems, when the nucleation process takes place at the surface of the solid and along the course of the transformation (nucleation and growth processes are simultaneous), the rate cannot be expressed by means of a function of α. Moreover, it is shown that new kinetic models can be obtained considering that the rate-determining step of growth may be located at the surface of the particles, and also the direction of development of the product phase may be outwards, instead of inward as generally considered. In order to simulate kinetic curves and to compare to the experimental ones, a free access software tool has been developed: CIN3. Examples of simulation and optimization are shown, illustrating the determination of constants related to nucleation and/or growth kinetics. Highlights : Discussion of the most relevant drawbacks linked to the rate equation dα/dt = A exp (â (E/RT))f(α). * Proposal of a more general equation dα/dt = Ï(T, Pi)Sm(t, ...), with Ï in mol mâ2 sâ1 and Sm in m2 molâ1. * New growth models and surface nucleation-anisotropic or isotropic growth models.* Description of CIN3 software for simulation and fitting of isothermal kinetic data
Oxidation of stainless steel powder
International audienceTo understand the corrosion behavior of a model 304L(p)-ZrO2(s) composite, a 304L stainless steel powder was studied under oxygen at high temperature. Oxidation tests were performed with thermogravimetry. The so-called jumps method, which involves a sudden change of the temperature, was also applied to propose a kinetic model. Two periods with different rate-determining steps could be distinguished for short (<12 h) and long time experiments (12-20 h). SEM observations of oxidized particles revealed an oxide layer structure similar to that of alloy plates of same composition: during the first ten hours period, the external scale surrounding stainless steel particles was found to be chromium oxide; for the second oxidation period, the outer oxide layer was enriched in iron. Considering the relatively short-term oxidation period, a kinetic model based on an outward growth of chromia from oxidation of Cr in solution in the spherical alloy particles was successfully compared to the experimental mass gain curve. The kp value deduced from this modeling was found to be in agreement with the literature data. The diffusion of interstitial chromium ions is the rate-determining step in agreement with the absence of influence of the oxygen partial pressure
Influence de dopants et de la vapeur d'eau sur la transformation des alumines de transition en alumine alpha.
International audienceLes alumines de transition sont frĂ©quemment utilisĂ©es comme support de catalyseurs. Lors de rĂ©actions impliquant des tempĂ©ratures Ă©levĂ©es (supĂ©rieures Ă 100°C environ), leur surface spĂ©cifique initialement Ă©levĂ©e chute rapidement, et on observe parallĂšlement leur transformation en alumine alpha (corindon), d'oĂč la perte d'efficacitĂ© du catalyseur. Ces phĂ©nomĂšnes sont influencĂ©s par la prĂ©sence d'impuretĂ©s et par la nature de la phase gazeuse. Lors d'Ă©tudes prĂ©cĂ©dentes, nous avons montrĂ© l'influence de l'addition de diffĂ©rents cations sur la vitesse de transformation en alumine alpha, et interprĂ©tĂ© leurs effets Ă l'aide de deux paramĂštres : rayon et charge ionique. Cet article prĂ©sente les rĂ©sultats concernant l'influence de l'addition simultanĂ©e de deux cations Mg2+ (accĂ©lĂ©rateur) et Zr4+ (ralentisseur), ainsi que celle de la pression de vapeur d'ea
Development of Single Chamber Solid Oxide Fuel Cells (SCFC)
International audienceSingle Chamber Solid Oxide Fuel Cells (SCFC) have been prepared using an electrolyte as support (Ce0.9Gd0.1O1.95 named GDC). Anode (Ni-GDC) and different cathodes (Sm0.5Sr0.5CoO3 (SSC), Ba0.5Sr0.5Co0.2Fe0.8O3 (BSCF) and La0.8Sr0.2MnO3 (LSM)) were placed on the same side of the electrolyte. All the electrodes were deposited using screen-printing technology. A gold collector was also deposited on the cathode to decrease the over-potential. The different materials and fuel cell devices were tested under propane/air mixture, after a preliminary treatment under hydrogen to reduce the as-deposited nickel oxide anode. The results show that SSC and BSCF cathodes are not stable in these conditions, leading to a very low open circuit voltage (OCV) of 150âmV. Although LSM material is not the more adequate cathode regarding its high catalytic activity towards hydrocarbon conversion, it has a better chemical stability than SSC and BSCF. Ni-GDC-LSM SCFC devices were elaborated and tested; an OCV of nearly 750âmV could be obtained with maximum power densities around 20âmWâcmâ2 at 620â°C, under airâpropane mixture with C3H8/O2 ratio equal to 0.53
Oxidation of a chromia-forming nickel base alloy at high temperature in mixed diluted CO/H2O atmospheres
International audienceCorrosion of a chromia-forming nickel base alloy, Haynes 230_, has been investigated under impure helium containing a few Pa of CO and H2O at 900 °C. It has been found that this alloy reacts simultaneously with CO and H2O. Oxidation by CO has been revealed to occur mainly in the first hours. CO diffuses through the scale via short-circuit pathways and oxidizes Al, Cr and Si at the oxide/metal interface. Kinetics of CO oxidation has been investigated and several rate limiting steps are proposed. In the long term, H2O is the major oxidant of chromia-forming nickel base alloys in impure helium
- âŠ